Hypothesis Testing for Error Mitigation: How to Evaluate Error
Mitigation
- URL: http://arxiv.org/abs/2301.02690v1
- Date: Fri, 6 Jan 2023 19:16:08 GMT
- Title: Hypothesis Testing for Error Mitigation: How to Evaluate Error
Mitigation
- Authors: Abdullah Ash Saki, Amara Katabarwa, Salonik Resch, George Umbrarescu
- Abstract summary: We introduce hypothesis testing within the framework of quantum error mitigation.
We propose an inclusive figure of merit that accounts for both resource requirement and mitigation efficiency.
We experimentally evaluate $16$ error mitigation pipelines composed of singular methods.
- Score: 0.9405458160620533
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the noisy intermediate-scale quantum (NISQ) era, quantum error mitigation
will be a necessary tool to extract useful performance out of quantum devices.
However, there is a big gap between the noise models often assumed by error
mitigation techniques and the actual noise on quantum devices. As a
consequence, there arises a gap between the theoretical expectations of the
techniques and their everyday performance. Cloud users of quantum devices in
particular, who often take the devices as they are, feel this gap the most. How
should they parametrize their uncertainty in the usefulness of these techniques
and be able to make judgement calls between resources required to implement
error mitigation and the accuracy required at the algorithmic level? To answer
the first question, we introduce hypothesis testing within the framework of
quantum error mitigation and for the second question, we propose an inclusive
figure of merit that accounts for both resource requirement and mitigation
efficiency of an error mitigation implementation. The figure of merit is useful
to weigh the trade-offs between the scalability and accuracy of various error
mitigation methods. Finally, using the hypothesis testing and the figure of
merit, we experimentally evaluate $16$ error mitigation pipelines composed of
singular methods such as zero noise extrapolation, randomized compilation,
measurement error mitigation, dynamical decoupling, and mitigation with
estimation circuits. In total our data involved running $275,640$ circuits on
two IBM quantum computers.
Related papers
- Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
leakage out of the computational subspace arising from the multi-level structure of qubit implementations.
We present a resource-efficient universal leakage reduction unit for superconducting qubits using parametric flux modulation.
We demonstrate that using the leakage reduction unit in repeated weight-two stabilizer measurements reduces the total number of detected errors in a scalable fashion.
arXiv Detail & Related papers (2023-09-13T16:21:32Z) - Quantum Conformal Prediction for Reliable Uncertainty Quantification in
Quantum Machine Learning [47.991114317813555]
Quantum models implement implicit probabilistic predictors that produce multiple random decisions for each input through measurement shots.
This paper proposes to leverage such randomness to define prediction sets for both classification and regression that provably capture the uncertainty of the model.
arXiv Detail & Related papers (2023-04-06T22:05:21Z) - Error Mitigation Thresholds in Noisy Random Quantum Circuits [0.30723404270319693]
We study the robustness of probabilistic error cancellation and tensor network error mitigation when the noise is imperfectly characterized.
For one-dimensional circuits, error mitigation fails at an $mathcalO(1)$ time for any imperfection in the characterization of disorder.
We discuss further implications for tests of quantum computational advantage, fault-tolerant probes of measurement-induced phase transitions, and quantum algorithms in near-term devices.
arXiv Detail & Related papers (2023-02-08T19:00:01Z) - Testing platform-independent quantum error mitigation on noisy quantum
computers [1.0499611180329804]
We apply quantum error mitigation techniques to a variety of benchmark problems and quantum computers.
We define an empirically motivated, resource-normalized metric of the improvement of error mitigation which we call the improvement factor.
arXiv Detail & Related papers (2022-10-13T17:15:03Z) - Quantum Error Mitigation [2.970233400756714]
In the coming era of NISQ' machines we must seek to mitigate errors rather than completely remove them.
This review surveys the diverse methods that have been proposed for quantum error mitigation.
We discuss the prospects for realising mitigation-based devices that can deliver quantum advantage with an impact on science and business.
arXiv Detail & Related papers (2022-10-03T13:28:36Z) - Volumetric Benchmarking of Error Mitigation with Qermit [0.0]
We develop a methodology to assess the performance of quantum error mitigation techniques.
Our benchmarks are volumetric in design, and are performed on different superconducting hardware devices.
Qermit is an open source python package for quantum error mitigation.
arXiv Detail & Related papers (2022-04-20T18:13:04Z) - Measuring NISQ Gate-Based Qubit Stability Using a 1+1 Field Theory and
Cycle Benchmarking [50.8020641352841]
We study coherent errors on a quantum hardware platform using a transverse field Ising model Hamiltonian as a sample user application.
We identify inter-day and intra-day qubit calibration drift and the impacts of quantum circuit placement on groups of qubits in different physical locations on the processor.
This paper also discusses how these measurements can provide a better understanding of these types of errors and how they may improve efforts to validate the accuracy of quantum computations.
arXiv Detail & Related papers (2022-01-08T23:12:55Z) - Characterizing quantum instruments: from non-demolition measurements to
quantum error correction [48.43720700248091]
In quantum information processing quantum operations are often processed alongside measurements which result in classical data.
Non-unitary dynamical processes can take place on the system, for which common quantum channel descriptions fail to describe the time evolution.
Quantum measurements are correctly treated by means of so-called quantum instruments capturing both classical outputs and post-measurement quantum states.
arXiv Detail & Related papers (2021-10-13T18:00:13Z) - Crosstalk Suppression for Fault-tolerant Quantum Error Correction with
Trapped Ions [62.997667081978825]
We present a study of crosstalk errors in a quantum-computing architecture based on a single string of ions confined by a radio-frequency trap, and manipulated by individually-addressed laser beams.
This type of errors affects spectator qubits that, ideally, should remain unaltered during the application of single- and two-qubit quantum gates addressed at a different set of active qubits.
We microscopically model crosstalk errors from first principles and present a detailed study showing the importance of using a coherent vs incoherent error modelling and, moreover, discuss strategies to actively suppress this crosstalk at the gate level.
arXiv Detail & Related papers (2020-12-21T14:20:40Z) - Multi-exponential Error Extrapolation and Combining Error Mitigation
Techniques for NISQ Applications [0.0]
Noise in quantum hardware remains the biggest roadblock for the implementation of quantum computers.
Error extrapolation is an error mitigation technique that has been successfully implemented experimentally.
We extend this to multi-exponential error extrapolation and provide more rigorous proof for its effectiveness under Pauli noise.
arXiv Detail & Related papers (2020-07-02T17:18:47Z) - Deterministic correction of qubit loss [48.43720700248091]
Loss of qubits poses one of the fundamental obstacles towards large-scale and fault-tolerant quantum information processors.
We experimentally demonstrate the implementation of a full cycle of qubit loss detection and correction on a minimal instance of a topological surface code.
arXiv Detail & Related papers (2020-02-21T19:48:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.