Finding Islands of Predictability in Action Forecasting
- URL: http://arxiv.org/abs/2210.07354v1
- Date: Thu, 13 Oct 2022 21:01:16 GMT
- Title: Finding Islands of Predictability in Action Forecasting
- Authors: Daniel Scarafoni, Irfan Essa, Thomas Ploetz
- Abstract summary: We show that future action sequences are more accurately modeled with variable, rather than one, levels of abstraction.
We propose a combination Bayesian neural network and hierarchical convolutional segmentation model to both accurately predict future actions and optimally select abstraction levels.
- Score: 7.215559809521136
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We address dense action forecasting: the problem of predicting future action
sequence over long durations based on partial observation. Our key insight is
that future action sequences are more accurately modeled with variable, rather
than one, levels of abstraction, and that the optimal level of abstraction can
be dynamically selected during the prediction process. Our experiments show
that most parts of future action sequences can be predicted confidently in fine
detail only in small segments of future frames, which are effectively
``islands'' of high model prediction confidence in a ``sea'' of uncertainty. We
propose a combination Bayesian neural network and hierarchical convolutional
segmentation model to both accurately predict future actions and optimally
select abstraction levels. We evaluate this approach on standard datasets
against existing state-of-the-art systems and demonstrate that our ``islands of
predictability'' approach maintains fine-grained action predictions while also
making accurate abstract predictions where systems were previously unable to do
so, and thus results in substantial, monotonic increases in accuracy.
Related papers
- Towards Generalizable and Interpretable Motion Prediction: A Deep
Variational Bayes Approach [54.429396802848224]
This paper proposes an interpretable generative model for motion prediction with robust generalizability to out-of-distribution cases.
For interpretability, the model achieves the target-driven motion prediction by estimating the spatial distribution of long-term destinations.
Experiments on motion prediction datasets validate that the fitted model can be interpretable and generalizable.
arXiv Detail & Related papers (2024-03-10T04:16:04Z) - Predicting from Predictions [18.393971232725015]
We study how causal effects of predictions on outcomes can be identified from observational data.
We show that supervised learning that predict from predictions can find transferable functional relationships between features, predictions, and outcomes.
arXiv Detail & Related papers (2022-08-15T16:57:02Z) - Uncertainty estimation of pedestrian future trajectory using Bayesian
approximation [137.00426219455116]
Under dynamic traffic scenarios, planning based on deterministic predictions is not trustworthy.
The authors propose to quantify uncertainty during forecasting using approximation which deterministic approaches fail to capture.
The effect of dropout weights and long-term prediction on future state uncertainty has been studied.
arXiv Detail & Related papers (2022-05-04T04:23:38Z) - Panoptic Segmentation Forecasting [71.75275164959953]
Our goal is to forecast the near future given a set of recent observations.
We think this ability to forecast, i.e., to anticipate, is integral for the success of autonomous agents.
We develop a two-component model: one component learns the dynamics of the background stuff by anticipating odometry, the other one anticipates the dynamics of detected things.
arXiv Detail & Related papers (2021-04-08T17:59:16Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
Probabilistic time series forecasting involves estimating the distribution of future based on its history.
We propose a deep state space model for probabilistic time series forecasting whereby the non-linear emission model and transition model are parameterized by networks.
We show in experiments that our model produces accurate and sharp probabilistic forecasts.
arXiv Detail & Related papers (2021-01-31T06:49:33Z) - Learning Accurate Long-term Dynamics for Model-based Reinforcement
Learning [7.194382512848327]
We propose a new parametrization to supervised learning on state-action data to stably predict at longer horizons.
Our results in simulated and experimental robotic tasks show that our trajectory-based models yield significantly more accurate long term predictions.
arXiv Detail & Related papers (2020-12-16T18:47:37Z) - Temporally-Continuous Probabilistic Prediction using Polynomial
Trajectory Parameterization [12.896275507449936]
A commonly-used representation for motion prediction of actors is a sequence of waypoints for each actor at discrete future time-points.
This approach is simple and flexible, but it can exhibit unrealistic higher-order derivatives and approximation errors at intermediate time steps.
We propose a simple and general representation for temporally continuous trajectory prediction that is based on trajectory parameterization.
arXiv Detail & Related papers (2020-11-01T01:51:44Z) - Video Prediction via Example Guidance [156.08546987158616]
In video prediction tasks, one major challenge is to capture the multi-modal nature of future contents and dynamics.
In this work, we propose a simple yet effective framework that can efficiently predict plausible future states.
arXiv Detail & Related papers (2020-07-03T14:57:24Z) - Fast, Optimal, and Targeted Predictions using Parametrized Decision
Analysis [0.0]
We develop a class of parametrized actions for Bayesian decision analysis that produce optimal, scalable, and simple targeted predictions.
Predictions are constructed for physical activity data from the National Health and Nutrition Examination Survey.
arXiv Detail & Related papers (2020-06-23T15:55:47Z) - Ambiguity in Sequential Data: Predicting Uncertain Futures with
Recurrent Models [110.82452096672182]
We propose an extension of the Multiple Hypothesis Prediction (MHP) model to handle ambiguous predictions with sequential data.
We also introduce a novel metric for ambiguous problems, which is better suited to account for uncertainties.
arXiv Detail & Related papers (2020-03-10T09:15:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.