論文の概要: Behavior Cloned Transformers are Neurosymbolic Reasoners
- arxiv url: http://arxiv.org/abs/2210.07382v1
- Date: Thu, 13 Oct 2022 21:54:33 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-17 14:56:34.219267
- Title: Behavior Cloned Transformers are Neurosymbolic Reasoners
- Title(参考訳): 行動クローントランスフォーマーは神経シンボリックな推論器である
- Authors: Ruoyao Wang, Peter Jansen, Marc-Alexandre C\^ot\'e, Prithviraj
Ammanabrolu
- Abstract要約: 本研究では,シンボルモジュールの情報を用いた対話型エージェントの強化手法について検討する。
テキストゲームでエージェントの能力をテストする -- エージェントの多段階推論能力を評価するためのベンチマークに挑戦する。
- 参考スコア(独自算出の注目度): 12.066880938687154
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we explore techniques for augmenting interactive agents with
information from symbolic modules, much like humans use tools like calculators
and GPS systems to assist with arithmetic and navigation. We test our agent's
abilities in text games -- challenging benchmarks for evaluating the multi-step
reasoning abilities of game agents in grounded, language-based environments.
Our experimental study indicates that injecting the actions from these symbolic
modules into the action space of a behavior cloned transformer agent increases
performance on four text game benchmarks that test arithmetic, navigation,
sorting, and common sense reasoning by an average of 22%, allowing an agent to
reach the highest possible performance on unseen games. This action injection
technique is easily extended to new agents, environments, and symbolic modules.
- Abstract(参考訳): 本研究では,計算機やGPSシステムなどのツールを使って計算やナビゲーションを支援するのと同じように,シンボルモジュールからの情報を対話エージェントに拡張する手法を検討する。
テキストゲームにおけるエージェントの能力をテストする -- ゲームエージェントの多段階推論能力の評価に挑戦するベンチマーク - 接地した言語ベースの環境において。
本研究では,これらのシンボルモジュールから行動クローン化トランスフォーマーエージェントの動作空間にアクションを注入することにより,算術,ナビゲーション,ソート,常識推論を平均22%向上させる4つのテキストゲームベンチマークの性能が向上し,エージェントが未知のゲーム上で最高のパフォーマンスを達成できることを示す。
このアクションインジェクション技術は、新しいエージェント、環境、シンボリックモジュールに容易に拡張できる。
関連論文リスト
- Symbolic Learning Enables Self-Evolving Agents [55.625275970720374]
エージェントシンボリックラーニング(エージェントシンボリックラーニング)(エージェントシンボリックラーニング)は、言語エージェントが自分自身で最適化できるための体系的なフレームワークである。
エージェント記号学習は、コネクショナリズム学習における2つの基本的なアルゴリズムを模倣することにより、言語エージェント内のシンボルネットワークを最適化するように設計されている。
我々は、標準ベンチマークと複雑な実世界のタスクの両方で概念実証実験を行う。
論文 参考訳(メタデータ) (2024-06-26T17:59:18Z) - AgentGym: Evolving Large Language Model-based Agents across Diverse Environments [116.97648507802926]
大規模言語モデル(LLM)はそのようなエージェントを構築するための有望な基盤と考えられている。
我々は、自己進化能力を備えた一般機能 LLM ベースのエージェントを構築するための第一歩を踏み出す。
我々はAgentGymを提案する。AgentGymは、幅広い、リアルタイム、ユニフォーマット、並行エージェント探索のための様々な環境とタスクを特徴とする新しいフレームワークである。
論文 参考訳(メタデータ) (2024-06-06T15:15:41Z) - Ag2Manip: Learning Novel Manipulation Skills with Agent-Agnostic Visual and Action Representations [77.31328397965653]
Ag2Manip(Agent-Agnostic representations for Manipulation)は,2つの重要なイノベーションを通じて課題を克服するフレームワークである。
人間の操作ビデオから派生した新しいエージェント非依存の視覚表現であり、その具体的特徴は一般化性を高めるために隠蔽された。
ロボットのキネマティクスを普遍的なエージェントプロキシに抽象化し、エンドエフェクタとオブジェクト間の重要な相互作用を強調するエージェント非依存のアクション表現。
論文 参考訳(メタデータ) (2024-04-26T16:40:17Z) - Benchmarking Mobile Device Control Agents across Diverse Configurations [19.01954948183538]
B-MoCAは、モバイルデバイス制御エージェントの評価と開発のためのベンチマークである。
我々は,大規模言語モデル (LLM) やマルチモーダル LLM を用いたエージェントを含む多種多様なエージェントをベンチマークする。
これらのエージェントは、簡単なタスクの実行の熟練度を示す一方で、複雑なタスクにおけるパフォーマンスの低さは、将来の研究が有効性を改善するための重要な機会を浮き彫りにしている。
論文 参考訳(メタデータ) (2024-04-25T14:56:32Z) - Deciphering Digital Detectives: Understanding LLM Behaviors and
Capabilities in Multi-Agent Mystery Games [26.07074182316433]
本稿では,Jubenshaに特化している最初のデータセットについて紹介する。
我々の研究は、LSMを使ったユニークなマルチエージェントインタラクションフレームワークも提供し、AIエージェントがこのゲームに自律的に関与できるようにする。
これらのAIエージェントのゲーム性能を評価するために,ケース情報と推論スキルの熟達度を測定する新しい手法を開発した。
論文 参考訳(メタデータ) (2023-12-01T17:33:57Z) - Investigating Navigation Strategies in the Morris Water Maze through
Deep Reinforcement Learning [4.408196554639971]
本研究では,モリス水迷路を2次元で模擬し,深層強化学習エージェントの訓練を行う。
我々は、ナビゲーション戦略の自動分類を行い、人工エージェントが使用する戦略の分布を分析し、実験データと比較し、人間やげっ歯類と同様の学習力学を示す。
論文 参考訳(メタデータ) (2023-06-01T18:16:16Z) - Episodic Transformer for Vision-and-Language Navigation [142.6236659368177]
本稿では,長時間のサブタスク処理と複雑なヒューマンインストラクションの理解という2つの課題に取り組むことに焦点を当てる。
エピソード変換器(E.T.)を提案する。
言語入力と視覚観察と行動の全エピソード履歴を符号化するマルチモーダルトランスフォーマーである。
我々のアプローチは、挑戦的なALFREDベンチマークに新たな技術状況を設定し、見つからないテストの分割で38.4%と8.5%のタスク成功率を達成した。
論文 参考訳(メタデータ) (2021-05-13T17:51:46Z) - Imitating Interactive Intelligence [24.95842455898523]
仮想環境の簡略化を用いて、人間と自然に相互作用できる人工エージェントの設計方法を検討する。
人間とロバストに相互作用できるエージェントを構築するには、人間と対話しながらトレーニングするのが理想的です。
我々は,人間とエージェントエージェントの対話行動の相違を低減するために,逆強化学習の考え方を用いる。
論文 参考訳(メタデータ) (2020-12-10T13:55:47Z) - Deep Reinforcement Learning with Stacked Hierarchical Attention for
Text-based Games [64.11746320061965]
自然言語の文脈におけるインタラクティブなシミュレーションであるテキストベースゲームの強化学習について検討する。
エージェントの動作が解釈可能な推論手順によって生成され、支援されるように、意思決定のための知識グラフを用いた明示的な推論を行うことを目指している。
提案手法を多数の人為的ベンチマークゲームで広範囲に評価し,本手法が既存のテキストベースエージェントよりも優れていることを示す実験結果を得た。
論文 参考訳(メタデータ) (2020-10-22T12:40:22Z) - Learning to Simulate Dynamic Environments with GameGAN [109.25308647431952]
本稿では,エージェントが環境と対話するのを見ることでシミュレーターを学習することを目的とする。
ゲームGANは,学習中にスクリーンプレイやキーボード操作を取り入れることで,所望のゲームを視覚的に模倣することを学習する生成モデルである。
論文 参考訳(メタデータ) (2020-05-25T14:10:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。