論文の概要: Estimation of High-Dimensional Markov-Switching VAR Models with an
Approximate EM Algorithm
- arxiv url: http://arxiv.org/abs/2210.07456v1
- Date: Fri, 14 Oct 2022 01:55:02 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-17 17:37:33.419952
- Title: Estimation of High-Dimensional Markov-Switching VAR Models with an
Approximate EM Algorithm
- Title(参考訳): 近似EMアルゴリズムによる高次元マルコフスイッチングVARモデルの推定
- Authors: Xiudi Li, Abolfazl Safikhani, Ali Shojaie
- Abstract要約: 高次元時系列におけるレジームシフトは、金融への多くの応用において自然に生じる。
本稿では,マルコフスイッチングモデルに対するEMアルゴリズムを提案する。
本研究では,提案するEMアルゴリズムの高次元での整合性を確立し,シミュレーションによる性能評価を行う。
- 参考スコア(独自算出の注目度): 4.069325369211861
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Regime shifts in high-dimensional time series arise naturally in many
applications, from neuroimaging to finance. This problem has received
considerable attention in low-dimensional settings, with both Bayesian and
frequentist methods used extensively for parameter estimation. The EM algorithm
is a particularly popular strategy for parameter estimation in low-dimensional
settings, although the statistical properties of the resulting estimates have
not been well understood. Furthermore, its extension to high-dimensional time
series has proved challenging. To overcome these challenges, in this paper we
propose an approximate EM algorithm for Markov-switching VAR models that leads
to efficient computation and also facilitates the investigation of asymptotic
properties of the resulting parameter estimates. We establish the consistency
of the proposed EM algorithm in high dimensions and investigate its performance
via simulation studies.
- Abstract(参考訳): 高次元時系列におけるレジームシフトは、神経画像からファイナンスまで、多くの応用において自然に発生する。
この問題は低次元の設定においてかなりの注目を集めており、ベイジアン法も頻繁法もパラメータ推定に広く用いられている。
EMアルゴリズムは低次元設定におけるパラメータ推定において特に一般的な戦略であるが、その結果の統計的性質はよく分かっていない。
さらに、高次元時系列への拡張は困難であることが証明された。
これらの課題を克服するため,本論文ではマルコフスイッチングvarモデルの近似emアルゴリズムを提案する。
提案するEMアルゴリズムの高次元での整合性を確立し,シミュレーションによる性能評価を行った。
関連論文リスト
- Eliminating Ratio Bias for Gradient-based Simulated Parameter Estimation [0.7673339435080445]
本稿では、可能性関数が解析的に利用できないモデルにおけるパラメータキャリブレーションの課題に対処する。
本稿では,最大推定と後続密度推定の両問題において,比バイアスの問題に対処するマルチタイムスケールを応用した勾配に基づくシミュレーションパラメータ推定フレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-20T02:46:15Z) - Rapid Parameter Estimation for Extreme Mass Ratio Inspirals Using Machine Learning [15.908645530312487]
EMRI(Extreme-mass-ratio Inspiral)信号は重力波(GW)天文学において重要な課題である。
機械学習は、EMRI信号に関連する最大17のパラメータを含む広大な空間を効率的に処理できる可能性があることを示す。
論文 参考訳(メタデータ) (2024-09-12T11:36:23Z) - Hyperparameter Estimation for Sparse Bayesian Learning Models [1.0172874946490507]
Aparse Bayesian Learning (SBL) モデルは、信号処理や機械学習において、階層的な事前処理による疎結合を促進するために広く使われている。
本稿では,種々の目的関数に対するSBLモデルの改良のためのフレームワークを提案する。
信号雑音比において, 高い効率性を示す新しいアルゴリズムが導入された。
論文 参考訳(メタデータ) (2024-01-04T21:24:01Z) - A Metaheuristic for Amortized Search in High-Dimensional Parameter
Spaces [0.0]
本稿では,特徴インフォームド変換から次元還元を実現するメタヒューリスティックを提案する。
DR-FFITは、高次元空間における勾配自由パラメータ探索を容易にする効率的なサンプリング戦略を実装している。
実験データから,DR-FFITは,確立したメタヒューリスティックスに対するランダム検索とシミュレート・アニーリングの性能を向上させることが示された。
論文 参考訳(メタデータ) (2023-09-28T14:25:14Z) - Active RIS-aided EH-NOMA Networks: A Deep Reinforcement Learning
Approach [66.53364438507208]
アクティブな再構成可能なインテリジェントサーフェス(RIS)支援マルチユーザダウンリンク通信システムについて検討した。
非直交多重アクセス(NOMA)はスペクトル効率を向上させるために使用され、活性RISはエネルギー回収(EH)によって駆動される。
ユーザの動的通信状態を予測するために,高度なLSTMベースのアルゴリズムを開発した。
増幅行列と位相シフト行列RISを結合制御するためにDDPGに基づくアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-04-11T13:16:28Z) - Optimal Algorithms for the Inhomogeneous Spiked Wigner Model [89.1371983413931]
不均一な問題に対する近似メッセージパッシングアルゴリズム(AMP)を導出する。
特に,情報理論の閾値よりも大きい信号と雑音の比を必要とする既知のアルゴリズムが,ランダムよりも優れた処理を行うための統計的・計算的ギャップの存在を同定する。
論文 参考訳(メタデータ) (2023-02-13T19:57:17Z) - Optimization of Annealed Importance Sampling Hyperparameters [77.34726150561087]
Annealed Importance Smpling (AIS) は、深層生成モデルの難易度を推定するために使われる一般的なアルゴリズムである。
本稿では、フレキシブルな中間分布を持つパラメータAISプロセスを提案し、サンプリングに少ないステップを使用するようにブリッジング分布を最適化する。
我々は, 最適化AISの性能評価を行い, 深部生成モデルの限界推定を行い, 他の推定値と比較した。
論文 参考訳(メタデータ) (2022-09-27T07:58:25Z) - Scalable Gaussian Process Hyperparameter Optimization via Coverage
Regularization [0.0]
本稿では,予測の不確かさの堅牢性を改善するために,Maternカーネルのスムーズさと長大パラメータを推定するアルゴリズムを提案する。
数値実験で示すように,高いスケーラビリティを維持しつつ,残余可能性よりも改善されたUQを実現する。
論文 参考訳(メタデータ) (2022-09-22T19:23:37Z) - Multi-objective hyperparameter optimization with performance uncertainty [62.997667081978825]
本稿では,機械学習アルゴリズムの評価における不確実性を考慮した多目的ハイパーパラメータ最適化の結果について述べる。
木構造型Parzen Estimator(TPE)のサンプリング戦略と、ガウス過程回帰(GPR)と異種雑音の訓練後に得られたメタモデルを組み合わせる。
3つの解析的テスト関数と3つのML問題の実験結果は、多目的TPEとGPRよりも改善したことを示している。
論文 参考訳(メタデータ) (2022-09-09T14:58:43Z) - A Dynamical Systems Approach for Convergence of the Bayesian EM
Algorithm [59.99439951055238]
我々は、(離散時間)リアプノフ安定性理論が、必ずしも勾配ベースではない最適化アルゴリズムの分析(および潜在的な設計)において、いかに強力なツールとして役立つかを示す。
本稿では,不完全データベイズフレームワークにおけるパラメータ推定を,MAP-EM (maximum a reari expectation-maximization) と呼ばれる一般的な最適化アルゴリズムを用いて行うことに着目したML問題について述べる。
高速収束(線形あるいは二次的)が達成され,S&Cアプローチを使わずに発表することが困難であった可能性が示唆された。
論文 参考訳(メタデータ) (2020-06-23T01:34:18Z) - Active Model Estimation in Markov Decision Processes [108.46146218973189]
マルコフ決定過程(MDP)をモデル化した環境の正確なモデル学習のための効率的な探索の課題について検討する。
マルコフに基づくアルゴリズムは,本アルゴリズムと極大エントロピーアルゴリズムの両方を小サンプル方式で上回っていることを示す。
論文 参考訳(メタデータ) (2020-03-06T16:17:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。