論文の概要: Superpixel perception graph neural network for intelligent defect detection of aero-engine blade
- arxiv url: http://arxiv.org/abs/2210.07539v2
- Date: Sun, 22 Sep 2024 07:39:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-09 15:35:37.595050
- Title: Superpixel perception graph neural network for intelligent defect detection of aero-engine blade
- Title(参考訳): 航空機エンジンブレードの知的欠陥検出のための超画素知覚グラフニューラルネットワーク
- Authors: Hongbing Shang, Qixiu Yang, Chuang Sun, Xuefeng Chen, Ruqiang Yan,
- Abstract要約: 従来のボアスコープ検査は、労働集約、時間消費、経験依存である。
この技術をインテリジェンスで実現するために,SPGNN(Super Pixel Recognition Graph Neural Network)を提案する。
実験により,提案したSPGNNは最先端手法と比較して優れた性能を示した。
- 参考スコア(独自算出の注目度): 2.17789923063904
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Aero-engine is the core component of aircraft and other spacecraft. The high-speed rotating blades provide power by sucking in air and fully combusting, and various defects will inevitably occur, threatening the operation safety of aero-engine. Therefore, regular inspections are essential for such a complex system. However, existing traditional technology which is borescope inspection is labor-intensive, time-consuming, and experience-dependent. To endow this technology with intelligence, a novel superpixel perception graph neural network (SPGNN) is proposed by utilizing a multi-stage graph convolutional network (MSGCN) for feature extraction and superpixel perception region proposal network (SPRPN) for region proposal. First, to capture complex and irregular textures, the images are transformed into a series of patches, to obtain their graph representations. Then, MSGCN composed of several GCN blocks extracts graph structure features and performs graph information processing at graph level. Last but not least, the SPRPN is proposed to generate perceptual bounding boxes by fusing graph representation features and superpixel perception features. Therefore, the proposed SPGNN always implements feature extraction and information transmission at the graph level in the whole SPGNN pipeline, to alleviate the reduction of receptive field and information loss. To verify the effectiveness of SPGNN, we construct a simulated blade dataset with 3000 images. A public aluminum dataset is also used to validate the performances of different methods. The experimental results demonstrate that the proposed SPGNN has superior performance compared with the state-of-the-art methods.
- Abstract(参考訳): エアロエンジンは航空機や他の宇宙船のコアコンポーネントである。
高速回転翼は空気を吸って完全に燃焼することで力を提供し、様々な欠陥が必然的に発生し、航空エンジンの運転安全性を脅かす。
そのため、このような複雑なシステムには定期的な検査が不可欠である。
しかしながら、ボアスコープ検査を行う既存の技術は、労働集約的で、時間がかかり、経験に依存している。
特徴抽出のための多段階グラフ畳み込みネットワーク(MSGCN)と領域提案のための超画素知覚領域提案ネットワーク(SPRPN)を用いて,この技術を知能で実現するために,新しい超画素知覚グラフニューラルネットワーク(SPGNN)を提案する。
まず、複雑な不規則なテクスチャをキャプチャするために、画像は一連のパッチに変換され、グラフ表現を得る。
次に、複数のGCNブロックからなるMSGCNがグラフ構造の特徴を抽出し、グラフレベルでグラフ情報処理を行う。
最後に、SPRPNは、グラフ表現特徴とスーパーピクセル知覚特徴を融合させて知覚境界ボックスを生成する。
そのため,提案したSPGNNは,SPGNNパイプライン全体のグラフレベルにおいて,常に特徴抽出と情報伝達を実装し,受容野の減少と情報損失を軽減する。
SPGNNの有効性を検証するため,3000枚の画像を用いたシミュレートされたブレードデータセットを構築した。
アルミニウムのパブリックデータセットは、異なる方法のパフォーマンスを検証するためにも使われる。
実験結果から,提案したSPGNNは最先端手法と比較して優れた性能を示した。
関連論文リスト
- GrassNet: State Space Model Meets Graph Neural Network [57.62885438406724]
Graph State Space Network (GrassNet)は、任意のグラフスペクトルフィルタを設計するためのシンプルで効果的なスキームを提供する理論的なサポートを持つ、新しいグラフニューラルネットワークである。
我々の知る限り、我々の研究はグラフGNNスペクトルフィルタの設計にSSMを使った最初のものである。
9つの公開ベンチマークでの大規模な実験により、GrassNetは現実世界のグラフモデリングタスクにおいて優れたパフォーマンスを達成することが明らかになった。
論文 参考訳(メタデータ) (2024-08-16T07:33:58Z) - S2RC-GCN: A Spatial-Spectral Reliable Contrastive Graph Convolutional Network for Complex Land Cover Classification Using Hyperspectral Images [10.579474650543471]
本研究ではS2RC-GCNという新しい空間スペクトル信頼性コントラストグラフ畳み込み分類フレームワークを提案する。
具体的には、1Dエンコーダと2Dエンコーダによって抽出されたスペクトルと空間の特徴を融合させ、2Dエンコーダは重要な情報を自動抽出するアテンションモデルを含む。
次に、融合した高次特徴を活用してグラフを構築し、結果のグラフをGCNに供給し、より効率的なグラフ表現を決定する。
論文 参考訳(メタデータ) (2024-04-01T07:17:02Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
本稿では,DWT(Distance-based Weighted Transformer)を利用した画像コンポーネント間の関係をよりよく理解するためのアーキテクチャを提案する。
CNNは、粗い事前の局所的なテクスチャ情報を強化するために使用される。
DWTブロックは、特定の粗いテクスチャやコヒーレントな視覚構造を復元するために使用される。
論文 参考訳(メタデータ) (2023-10-11T12:46:11Z) - Wind Turbine Gearbox Fault Detection Based on Sparse Filtering and Graph
Neural Networks [5.415995239349699]
風力タービンのギアボックスの故障は特に顕著であり、最も長いダウンタイムと高いコストに繋がる。
本稿では、グラフニューラルネットワーク(GNN)モデルとスパースフィルタリング(SF)モデルを用いて、高周波振動データに基づくデータ駆動ギヤボックス故障検出アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-03-06T21:08:07Z) - SAR Despeckling Using Overcomplete Convolutional Networks [53.99620005035804]
スペックルはSAR画像を劣化させるため、リモートセンシングにおいて重要な問題である。
近年の研究では、畳み込みニューラルネットワーク(CNN)が古典的解法よりも優れていることが示されている。
本研究は、受容場を制限することで低レベルの特徴を学習することに集中するために、過剰なCNNアーキテクチャを用いる。
本稿では,合成および実SAR画像の非特定化手法と比較して,提案手法により非特定化性能が向上することを示す。
論文 参考訳(メタデータ) (2022-05-31T15:55:37Z) - Hyperspectral Image Classification With Contrastive Graph Convolutional
Network [38.43072371303967]
スペクトル情報と空間関係の両方に含まれる監視信号を調べるために,比較学習を伴うグラフ畳み込みネットワーク(GCN)モデルを提案する。
4つの典型的なベンチマークデータセットの実験結果は、定性的および定量的両面において提案したConGCNの有効性を確証している。
論文 参考訳(メタデータ) (2022-05-11T12:06:37Z) - Spiking Graph Convolutional Networks [19.36064180392385]
SpikingGCNは、GCNの埋め込みとSNNの生体忠実性特性を統合することを目的としたエンドツーエンドフレームワークである。
ニューロモルフィックチップ上でのスパイキングGCNは、グラフデータ解析にエネルギー効率の明確な利点をもたらすことを示す。
論文 参考訳(メタデータ) (2022-05-05T16:44:36Z) - All-optical graph representation learning using integrated diffractive
photonic computing units [51.15389025760809]
フォトニックニューラルネットワークは、電子の代わりに光子を用いて脳にインスパイアされた計算を行う。
我々は、DGNN(diffractive graph neural network)と呼ばれる全光グラフ表現学習アーキテクチャを提案する。
ベンチマークデータベースを用いたノードおよびグラフレベルの分類タスクにおけるDGNN抽出機能の利用を実演し、優れた性能を実現する。
論文 参考訳(メタデータ) (2022-04-23T02:29:48Z) - Learning Spatial-Spectral Prior for Super-Resolution of Hyperspectral
Imagery [79.69449412334188]
本稿では,最先端の残差学習をベースとした単一グレー/RGB画像の超解像化手法について検討する。
本稿では,空間情報とハイパースペクトルデータのスペクトル間の相関をフル活用するための空間スペクトル先行ネットワーク(SSPN)を提案する。
実験結果から,SSPSR法により高分解能高分解能高分解能画像の詳細が得られた。
論文 参考訳(メタデータ) (2020-05-18T14:25:50Z) - HyNNA: Improved Performance for Neuromorphic Vision Sensor based
Surveillance using Hybrid Neural Network Architecture [7.293414498855147]
領域提案のための形態素画像処理アルゴリズムを用いて,最近提案されたハイブリッドイベントフレームアプローチを改善した。
また、様々な畳み込みニューラルネットワーク(CNN)アーキテクチャを探索することにより、オブジェクト検出と分類の低消費電力要求にも対処する。
具体的には、対象検出フレームワークから得られた結果を最先端の低出力NVS監視システムと比較し、63.1%から82.16%の改善精度を示した。
論文 参考訳(メタデータ) (2020-03-19T07:18:33Z) - Spectral Graph Attention Network with Fast Eigen-approximation [103.93113062682633]
スペクトルグラフ注意ネットワーク(SpGAT)は、重み付きフィルタとグラフウェーブレットベースに関する異なる周波数成分の表現を学習する。
固有分解による計算コストを削減するために,高速近似変種SpGAT-Chebyを提案する。
半教師付きノード分類タスクにおけるSpGATとSpGAT-Chebyの性能を徹底的に評価する。
論文 参考訳(メタデータ) (2020-03-16T21:49:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。