論文の概要: Wind Turbine Gearbox Fault Detection Based on Sparse Filtering and Graph
Neural Networks
- arxiv url: http://arxiv.org/abs/2303.03496v1
- Date: Mon, 6 Mar 2023 21:08:07 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-08 17:22:24.472153
- Title: Wind Turbine Gearbox Fault Detection Based on Sparse Filtering and Graph
Neural Networks
- Title(参考訳): スパースフィルタとグラフニューラルネットワークを用いた風力発電ギアボックス故障検出
- Authors: Jinsong Wang, Kenneth A. Loparo
- Abstract要約: 風力タービンのギアボックスの故障は特に顕著であり、最も長いダウンタイムと高いコストに繋がる。
本稿では、グラフニューラルネットワーク(GNN)モデルとスパースフィルタリング(SF)モデルを用いて、高周波振動データに基づくデータ駆動ギヤボックス故障検出アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 5.415995239349699
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The wind energy industry has been experiencing tremendous growth and
confronting the failures of wind turbine components. Wind turbine gearbox
malfunctions are particularly prevalent and lead to the most prolonged downtime
and highest cost. This paper presents a data-driven gearbox fault detection
algorithm base on high frequency vibration data using graph neural network
(GNN) models and sparse filtering (SF). The approach can take advantage of the
comprehensive data sources and the complicated sensing networks. The GNN
models, including basic graph neural networks, gated graph neural networks, and
gated graph sequential neural networks, are used to detect gearbox condition
from knowledge-based graphs formed using wind turbine information. Sparse
filtering is used as an unsupervised feature learning method to accelerate the
training of the GNN models. The effectiveness of the proposed method was
verified on practical experimental data.
- Abstract(参考訳): 風力エネルギー産業は著しく成長し、風力タービンの部品の故障に直面している。
風力タービンのギアボックスの故障は特に顕著であり、最も長いダウンタイムと高いコストをもたらす。
本稿では,グラフニューラルネットワーク(gnn)モデルとスパースフィルタリング(sf)を用いた高周波振動データに基づく,データ駆動型ギアボックス故障検出アルゴリズムを提案する。
このアプローチは、包括的なデータソースと複雑なセンシングネットワークを活用することができる。
基本グラフニューラルネットワーク、ゲートグラフニューラルネットワーク、ゲートグラフシーケンシャルニューラルネットワークを含むgnnモデルは、風力タービン情報を用いて形成された知識に基づくグラフからギアボックス条件を検出するために使用される。
スパースフィルタリングはGNNモデルの訓練を高速化するための教師なし特徴学習法として用いられる。
本手法の有効性を実用実験データで検証した。
関連論文リスト
- DFA-GNN: Forward Learning of Graph Neural Networks by Direct Feedback Alignment [57.62885438406724]
グラフニューラルネットワークは、様々なアプリケーションにまたがる強力なパフォーマンスで認識されている。
BPには、その生物学的妥当性に挑戦する制限があり、グラフベースのタスクのためのトレーニングニューラルネットワークの効率、スケーラビリティ、並列性に影響を与える。
半教師付き学習のケーススタディを用いて,GNNに適した新しい前方学習フレームワークであるDFA-GNNを提案する。
論文 参考訳(メタデータ) (2024-06-04T07:24:51Z) - Unleash Graph Neural Networks from Heavy Tuning [33.948899558876604]
グラフニューラルネットワーク(GNN)は、グラフ型データ用に設計されたディープラーニングアーキテクチャである。
本稿では,光チューニングされた粗い探索中に保存されたチェックポイントから学習することで,高性能なGNNを直接生成するグラフ条件付き潜時拡散フレームワーク(GNN-Diff)を提案する。
論文 参考訳(メタデータ) (2024-05-21T06:23:47Z) - End-to-end Wind Turbine Wake Modelling with Deep Graph Representation
Learning [7.850747042819504]
本研究は,グラフニューラルネットワークと呼ばれるグラフ表現学習法に基づいて,風力タービンウェイクの表現のための代理モデルを提案する。
提案するエンドツーエンドディープラーニングモデルは、非構造化メッシュ上で直接動作し、高忠実度データに対して検証されている。
実世界の風力発電所に基づくケーススタディでは,提案手法による大規模発電予測の可能性をさらに実証する。
論文 参考訳(メタデータ) (2022-11-24T15:00:06Z) - Representation Learning of Knowledge Graph for Wireless Communication
Networks [21.123289598816847]
本稿では,無線通信プロトコルに基づいて知識グラフを構築することにより,無線データの内在的関係を理解することを目的とする。
グラフ畳み込みニューラルネットワークに基づく新しいモデルは、グラフノードを分類し、関係予測をシミュレートするために使用されるグラフの表現を学ぶように設計されている。
論文 参考訳(メタデータ) (2022-08-22T07:36:34Z) - Overcoming Oversmoothness in Graph Convolutional Networks via Hybrid
Scattering Networks [11.857894213975644]
本稿では,従来のGCNフィルタと幾何散乱変換を用いて定義された帯域通過フィルタを組み合わせたハイブリッドグラフニューラルネットワーク(GNN)フレームワークを提案する。
理論的には, グラフからの構造情報を活用するために散乱フィルタの相補的な利点が確立され, 実験では様々な学習課題における手法の利点が示された。
論文 参考訳(メタデータ) (2022-01-22T00:47:41Z) - Graph Neural Networks with Adaptive Frequency Response Filter [55.626174910206046]
適応周波数応答フィルタを用いたグラフニューラルネットワークフレームワークAdaGNNを開発した。
提案手法の有効性を,様々なベンチマークデータセット上で実証的に検証した。
論文 参考訳(メタデータ) (2021-04-26T19:31:21Z) - An Introduction to Robust Graph Convolutional Networks [71.68610791161355]
本論文では, 誤りのある単一ビューあるいは複数ビューのデータに対して, 新たなロバストグラフ畳み込みニューラルネットワークを提案する。
従来のグラフ畳み込みネットワークにAutoencodersを介して余分なレイヤを組み込むことで、典型的なエラーモデルを明示的に特徴付けおよび処理します。
論文 参考訳(メタデータ) (2021-03-27T04:47:59Z) - Intelligent Icing Detection Model of Wind Turbine Blades Based on SCADA
data [0.0]
本稿では,畳み込みニューラルネットワーク(CNN),GAN(Generative Adversarial Network),ドメイン適応学習(Domain Adaption Learning)を用いて,インテリジェントな診断フレームワークを構築する可能性について検討する。
本研究は, 正常およびアイシング試料の固有特徴を捉えるために, 並列GANを用いた2段階の訓練について検討する。
3つの風力タービンSCADAデータのモデル検証は、2段階の訓練がモデル性能を効果的に改善できることを示している。
論文 参考訳(メタデータ) (2021-01-20T00:46:52Z) - Data-Driven Learning of Geometric Scattering Networks [74.3283600072357]
最近提案された幾何散乱変換の緩和に基づく新しいグラフニューラルネットワーク(GNN)モジュールを提案する。
我々の学習可能な幾何散乱(LEGS)モジュールは、ウェーブレットの適応的なチューニングを可能にし、学習された表現に帯域通過の特徴が現れるように促す。
論文 参考訳(メタデータ) (2020-10-06T01:20:27Z) - Graph Neural Networks for Motion Planning [108.51253840181677]
低次元問題に対する高密度固定グラフ上のGNNと高次元問題に対するサンプリングベースGNNの2つの手法を提案する。
RRT(Rapidly-Exploring Random Trees)におけるクリティカルノードの特定やサンプリング分布の学習といった計画上の問題にGNNが取り組む能力について検討する。
臨界サンプリング、振り子、6つのDoFロボットアームによる実験では、GNNは従来の分析手法の改善だけでなく、完全に接続されたニューラルネットワークや畳み込みニューラルネットワークを用いた学習アプローチも示している。
論文 参考訳(メタデータ) (2020-06-11T08:19:06Z) - Graphs, Convolutions, and Neural Networks: From Graph Filters to Graph
Neural Networks [183.97265247061847]
我々はグラフ信号処理を活用してグラフニューラルネットワーク(GNN)の表現空間を特徴付ける。
GNNにおけるグラフ畳み込みフィルタの役割について議論し、そのようなフィルタで構築されたアーキテクチャは、置換同値の基本的な性質と位相変化に対する安定性を持つことを示す。
また,ロボット群に対するリコメンデータシステムや分散型コントローラの学習におけるGNNの利用について検討した。
論文 参考訳(メタデータ) (2020-03-08T13:02:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。