論文の概要: Reconstructed Student-Teacher and Discriminative Networks for Anomaly
Detection
- arxiv url: http://arxiv.org/abs/2210.07548v1
- Date: Fri, 14 Oct 2022 05:57:50 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-17 16:52:12.870542
- Title: Reconstructed Student-Teacher and Discriminative Networks for Anomaly
Detection
- Title(参考訳): 異常検出のための教師と判別ネットワークの再構築
- Authors: Shinji Yamada, Satoshi Kamiya, Kazuhiro Hotta
- Abstract要約: 学生と教師のネットワークで構成されるSTPM(Standard-Teacher Feature pyramid matching)に基づいて,強力な異常検出手法を提案する。
本研究は,STPMの精度を向上させるために,学生ネットワークを生成モデルとして使用し,通常の特徴を再構築する。
さらに精度を向上させるために,本手法では擬似アノマリーで訓練した識別ネットワークを用いる。
- 参考スコア(独自算出の注目度): 8.35780131268962
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Anomaly detection is an important problem in computer vision; however, the
scarcity of anomalous samples makes this task difficult. Thus, recent anomaly
detection methods have used only normal images with no abnormal areas for
training. In this work, a powerful anomaly detection method is proposed based
on student-teacher feature pyramid matching (STPM), which consists of a student
and teacher network. Generative models are another approach to anomaly
detection. They reconstruct normal images from an input and compute the
difference between the predicted normal and the input. Unfortunately, STPM does
not have the ability to generate normal images. To improve the accuracy of
STPM, this work uses a student network, as in generative models, to reconstruct
normal features. This improves the accuracy; however, the anomaly maps for
normal images are not clean because STPM does not use anomaly images for
training, which decreases the accuracy of the image-level anomaly detection. To
further improve accuracy, a discriminative network trained with
pseudo-anomalies from anomaly maps is used in our method, which consists of two
pairs of student-teacher networks and a discriminative network. The method
displayed high accuracy on the MVTec anomaly detection dataset.
- Abstract(参考訳): 異常検出はコンピュータビジョンの重要な問題であるが、異常なサンプルが少ないため、この課題は困難である。
したがって,近年の異常検出法では,異常領域のない通常の画像のみを用いて訓練を行っている。
本研究では,学生と教師のネットワークで構成されるSTPM(Standard-Teacher Feature pyramid matching)に基づいて,強力な異常検出手法を提案する。
生成モデルは異常検出の別のアプローチである。
入力から通常の画像を再構成し、予測された正規と入力との差を計算する。
残念ながら、STPMは通常の画像を生成する能力を持っていない。
本研究は,STPMの精度を向上させるために,学生ネットワークを生成モデルとして使用し,通常の特徴を再構築する。
これにより精度が向上するが、stpmはトレーニングに異常画像を使用しないため、通常の画像の異常マップはクリーンではないため、画像レベルの異常検出の精度が低下する。
さらに精度を向上させるために,2組の学生教師ネットワークと判別ネットワークからなる手法において,異常マップから擬似異常を訓練した判別ネットワークを用いた。
この手法はMVTec異常検出データセットに高い精度を示した。
関連論文リスト
- Fine-grained Abnormality Prompt Learning for Zero-shot Anomaly Detection [88.34095233600719]
FAPromptは、より正確なZSADのためにきめ細かい異常プロンプトを学習するために設計された新しいフレームワークである。
画像レベルおよび画素レベルのZSADタスクにおいて、最先端の手法を少なくとも3%-5%のAUC/APで大幅に上回っている。
論文 参考訳(メタデータ) (2024-10-14T08:41:31Z) - Spatial-aware Attention Generative Adversarial Network for Semi-supervised Anomaly Detection in Medical Image [63.59114880750643]
本稿では,一級半教師付き健康画像生成のための空間意識生成ネットワーク(SAGAN)について紹介する。
SAGANは、正常な画像の復元と擬似異常画像の復元によって導かれる、ラベルのないデータに対応する高品質な健康画像を生成する。
3つの医学データセットに対する大規模な実験は、提案されたSAGANが最先端の手法よりも優れていることを示した。
論文 参考訳(メタデータ) (2024-05-21T15:41:34Z) - Normality Learning-based Graph Anomaly Detection via Multi-Scale
Contrastive Learning [61.57383634677747]
グラフ異常検出(GAD)は、機械学習やデータマイニングにおいて注目を集めている。
本稿では,マルチスケールコントラスト学習ネットワーク(NLGAD,略語)による正規性学習に基づくGADフレームワークを提案する。
特に,提案アルゴリズムは,最先端手法と比較して検出性能(最大5.89%のAUCゲイン)を向上させる。
論文 参考訳(メタデータ) (2023-09-12T08:06:04Z) - EfficientAD: Accurate Visual Anomaly Detection at Millisecond-Level
Latencies [1.1602089225841632]
本稿では,最新のGPU上で1ミリ秒未満で画像を処理する軽量な特徴抽出器を提案する。
次に,生徒-教員のアプローチを用いて異常な特徴を検出する。
3つの産業的異常検出データセットから抽出した32個のデータセットからEfficientADという手法を評価した。
論文 参考訳(メタデータ) (2023-03-25T18:48:33Z) - Supervised Anomaly Detection Method Combining Generative Adversarial
Networks and Three-Dimensional Data in Vehicle Inspections [0.0]
車両の床下機器の外部視界検査は現在、人間の視界検査によって行われている。
本研究では,3次元コンピュータグラフィックス上で生成した逆数ネットワークを用いたスタイル変換手法を提案する。
論文 参考訳(メタデータ) (2022-12-22T06:39:52Z) - Asymmetric Student-Teacher Networks for Industrial Anomaly Detection [22.641661538154054]
本研究は,学生・教員による異常検出手法の既知の問題点を明らかにする。
2つのニューラルネットワークがトレーニングされ、欠陥のないトレーニング例で同じ出力を生成する。
本手法は, MVTec AD と MVTec 3D-AD の2つの現在最も関連性の高い欠陥検出データセットに対して, 最先端の結果を生成する。
論文 参考訳(メタデータ) (2022-10-14T13:56:50Z) - Dual-distribution discrepancy with self-supervised refinement for
anomaly detection in medical images [29.57501199670898]
我々は、既知の正規画像と未ラベル画像を利用するために、一級半教師付き学習(OC-SSL)を導入する。
再構成ネットワークのアンサンブルは、正規画像の分布と、正規画像と未ラベル画像の両方の分布をモデル化するように設計されている。
本稿では,異常を直接検出するのではなく,異常スコアを改良する自己教師型学習の新しい視点を提案する。
論文 参考訳(メタデータ) (2022-10-09T11:18:45Z) - SLA$^2$P: Self-supervised Anomaly Detection with Adversarial
Perturbation [77.71161225100927]
異常検出は、機械学習の基本的な問題であるが、難しい問題である。
本稿では,非教師付き異常検出のための新しい強力なフレームワークであるSLA$2$Pを提案する。
論文 参考訳(メタデータ) (2021-11-25T03:53:43Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
本稿では,弱い教師付き異常検出フレームワークを導入し,検出モデルを訓練する。
提案手法は,ラベル付き異常と事前確率を活用することにより,識別正規性を学習する。
我々のモデルはサンプル効率が高く頑健であり、クローズドセットとオープンセットの両方の設定において最先端の競合手法よりもはるかに優れている。
論文 参考訳(メタデータ) (2021-08-01T14:33:17Z) - CutPaste: Self-Supervised Learning for Anomaly Detection and
Localization [59.719925639875036]
通常のトレーニングデータのみを用いて異常検知器を構築するためのフレームワークを提案する。
まず、自己教師付き深層表現を学習し、学習した表現の上に生成的1クラス分類器を構築する。
MVTec異常検出データセットに関する実証研究は,提案アルゴリズムが実世界の様々な欠陥を検出可能であることを実証している。
論文 参考訳(メタデータ) (2021-04-08T19:04:55Z) - Image Anomaly Detection by Aggregating Deep Pyramidal Representations [16.246831343527052]
異常検出は、データセット内で、ほとんどのデータと大きく異なるサンプルを特定することで構成される。
本稿では,複数のピラミッドレベルを持つ深層ニューラルネットワークを用いた画像異常検出に着目し,画像特徴を異なるスケールで解析する。
論文 参考訳(メタデータ) (2020-11-12T09:58:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。