論文の概要: MCTNet: A Multi-Scale CNN-Transformer Network for Change Detection in
Optical Remote Sensing Images
- arxiv url: http://arxiv.org/abs/2210.07601v3
- Date: Sat, 29 Jul 2023 03:13:05 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-02 00:26:34.884431
- Title: MCTNet: A Multi-Scale CNN-Transformer Network for Change Detection in
Optical Remote Sensing Images
- Title(参考訳): mctnet:光リモートセンシング画像の変更検出のためのマルチスケールcnn-transformerネットワーク
- Authors: Weiming Li, Lihui Xue, Xueqian Wang, and Gang Li
- Abstract要約: MCTNetと呼ばれるマルチスケールCNN変換器構造に基づくハイブリッドネットワークを提案する。
MCTNetは既存の最先端CD法よりも優れた検出性能が得られることを示す。
- 参考スコア(独自算出の注目度): 7.764449276074902
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: For the task of change detection (CD) in remote sensing images, deep
convolution neural networks (CNNs)-based methods have recently aggregated
transformer modules to improve the capability of global feature extraction.
However, they suffer degraded CD performance on small changed areas due to the
simple single-scale integration of deep CNNs and transformer modules. To
address this issue, we propose a hybrid network based on multi-scale
CNN-transformer structure, termed MCTNet, where the multi-scale global and
local information are exploited to enhance the robustness of the CD performance
on changed areas with different sizes. Especially, we design the ConvTrans
block to adaptively aggregate global features from transformer modules and
local features from CNN layers, which provides abundant global-local features
with different scales. Experimental results demonstrate that our MCTNet
achieves better detection performance than existing state-of-the-art CD
methods.
- Abstract(参考訳): リモートセンシング画像における変化検出(cd)タスクのために、ディープ畳み込みニューラルネットワーク(cnns)ベースの手法が最近、グローバル特徴抽出能力を改善するためにトランスフォーマーモジュールを集約した。
しかし、深層cnnとトランスフォーマーモジュールの単純な単一スケール統合により、小さな変更領域でcdパフォーマンスが低下した。
この問題に対処するために,MCTNetと呼ばれるマルチスケールCNN変換器構造に基づくハイブリッドネットワークを提案する。
特に,変換器モジュールからグローバルな特徴を適応的に集約するConvTransブロックを設計し,CNN層からローカルな特徴を抽出する。
MCTNetは,既存の最先端CD法よりも優れた検出性能を示す。
関連論文リスト
- CTA-Net: A CNN-Transformer Aggregation Network for Improving Multi-Scale Feature Extraction [14.377544481394013]
CTA-NetはCNNとViTを組み合わせて、長距離依存関係をキャプチャするトランスフォーマーと、ローカライズされた特徴を抽出するCNNを備えている。
この統合により、詳細なローカルおよびより広いコンテキスト情報の効率的な処理が可能になる。
10万以上のサンプルを持つ小規模データセットの実験は、CTA-Netが優れたパフォーマンスを実現していることを示している。
論文 参考訳(メタデータ) (2024-10-15T09:27:26Z) - Relating CNN-Transformer Fusion Network for Change Detection [23.025190360146635]
RCTNetは、空間的特徴と時間的特徴の両方を利用する早期融合バックボーンを導入した。
実験では、従来のRS画像CD法よりもRCTNetの方が明らかに優れていることを示した。
論文 参考訳(メタデータ) (2024-07-03T14:58:40Z) - ELGC-Net: Efficient Local-Global Context Aggregation for Remote Sensing Change Detection [65.59969454655996]
本稿では,変化領域を正確に推定するために,リッチな文脈情報を利用する効率的な変化検出フレームワークELGC-Netを提案する。
提案するELGC-Netは、リモートセンシング変更検出ベンチマークにおいて、最先端の性能を新たに設定する。
また,ELGC-Net-LWも導入した。
論文 参考訳(メタデータ) (2024-03-26T17:46:25Z) - Multiscale Low-Frequency Memory Network for Improved Feature Extraction
in Convolutional Neural Networks [13.815116154370834]
本稿では,Multiscale Low-Frequency Memory (MLFM) Networkを提案する。
MLFMは低周波情報を効率よく保存し、目標とするコンピュータビジョンタスクの性能を向上させる。
我々の研究は、既存のCNN基盤の上に構築され、コンピュータビジョンの今後の進歩の道を開く。
論文 参考訳(メタデータ) (2024-03-13T00:48:41Z) - TransY-Net:Learning Fully Transformer Networks for Change Detection of
Remote Sensing Images [64.63004710817239]
リモートセンシング画像CDのためのトランスフォーマーベース学習フレームワークTransY-Netを提案する。
グローバルな視点からの特徴抽出を改善し、ピラミッド方式で多段階の視覚的特徴を組み合わせる。
提案手法は,4つの光学式および2つのSAR画像CDベンチマーク上での最先端性能を実現する。
論文 参考訳(メタデータ) (2023-10-22T07:42:19Z) - Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
本稿では, 原子核位置を直接生成する新しいアフィン一貫性変換器 (AC-Former) を提案する。
本稿では,AAT (Adaptive Affine Transformer) モジュールを導入し,ローカルネットワークトレーニングのためのオリジナル画像をワープするための重要な空間変換を自動学習する。
実験結果から,提案手法は様々なベンチマークにおいて既存の最先端アルゴリズムを著しく上回ることがわかった。
論文 参考訳(メタデータ) (2023-10-22T02:27:02Z) - SwinV2DNet: Pyramid and Self-Supervision Compounded Feature Learning for
Remote Sensing Images Change Detection [12.727650696327878]
本稿では,変換器とCNNの利点を継承するために,エンドツーエンドの複合ネットワークSwinV2DNetを提案する。
これは、密に接続されたSwin V2バックボーンを通じて、変更関係の機能をキャプチャする。
CNNブランチを通じて、低レベルの事前変更と後変更の機能を提供する。
論文 参考訳(メタデータ) (2023-08-22T03:31:52Z) - Vision Transformer with Convolutions Architecture Search [72.70461709267497]
本稿では,畳み込み型アーキテクチャサーチ(VTCAS)を用いたアーキテクチャ探索手法を提案する。
VTCASによって探索された高性能バックボーンネットワークは、畳み込みニューラルネットワークの望ましい特徴をトランスフォーマーアーキテクチャに導入する。
これは、特に低照度屋内シーンにおいて、物体認識のためのニューラルネットワークの堅牢性を高める。
論文 参考訳(メタデータ) (2022-03-20T02:59:51Z) - Rich CNN-Transformer Feature Aggregation Networks for Super-Resolution [50.10987776141901]
近年の視覚変換器と自己注意は,様々なコンピュータビジョンタスクにおいて有望な成果を上げている。
我々は,CNNの局所的特徴とトランスフォーマーが捉えた長距離依存性を活用する,超解像(SR)タスクのための効果的なハイブリッドアーキテクチャを提案する。
提案手法は,多数のベンチマークデータセットから最先端のSR結果を得る。
論文 参考訳(メタデータ) (2022-03-15T06:52:25Z) - Container: Context Aggregation Network [83.12004501984043]
最近の発見は、従来の畳み込みやトランスフォーマーコンポーネントを使わずに、シンプルなベースのソリューションが効果的な視覚表現を生成できることを示している。
マルチヘッドコンテキストアグリゲーションのための汎用ビルディングブロックCONText Ion NERtwokを提案する。
より大規模な入力画像解像度に依存する下流タスクにはスケールしないTransformerベースの手法とは対照的に、当社の効率的なネットワークであるModellightは、オブジェクト検出やインスタンスセグメンテーションネットワークに利用することができる。
論文 参考訳(メタデータ) (2021-06-02T18:09:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。