論文の概要: Relating CNN-Transformer Fusion Network for Change Detection
- arxiv url: http://arxiv.org/abs/2407.03178v1
- Date: Wed, 3 Jul 2024 14:58:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 13:46:50.809653
- Title: Relating CNN-Transformer Fusion Network for Change Detection
- Title(参考訳): 変更検出のためのCNN-Transformer Fusion Networkの関連性
- Authors: Yuhao Gao, Gensheng Pei, Mengmeng Sheng, Zeren Sun, Tao Chen, Yazhou Yao,
- Abstract要約: RCTNetは、空間的特徴と時間的特徴の両方を利用する早期融合バックボーンを導入した。
実験では、従来のRS画像CD法よりもRCTNetの方が明らかに優れていることを示した。
- 参考スコア(独自算出の注目度): 23.025190360146635
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While deep learning, particularly convolutional neural networks (CNNs), has revolutionized remote sensing (RS) change detection (CD), existing approaches often miss crucial features due to neglecting global context and incomplete change learning. Additionally, transformer networks struggle with low-level details. RCTNet addresses these limitations by introducing \textbf{(1)} an early fusion backbone to exploit both spatial and temporal features early on, \textbf{(2)} a Cross-Stage Aggregation (CSA) module for enhanced temporal representation, \textbf{(3)} a Multi-Scale Feature Fusion (MSF) module for enriched feature extraction in the decoder, and \textbf{(4)} an Efficient Self-deciphering Attention (ESA) module utilizing transformers to capture global information and fine-grained details for accurate change detection. Extensive experiments demonstrate RCTNet's clear superiority over traditional RS image CD methods, showing significant improvement and an optimal balance between accuracy and computational cost.
- Abstract(参考訳): ディープラーニング、特に畳み込みニューラルネットワーク(CNN)は、リモートセンシング(RS)変更検出(CD)に革命をもたらしたが、既存のアプローチでは、グローバルコンテキストの無視と不完全な変更学習のために重要な機能を欠いていることが多い。
さらに、トランスフォーマーネットワークは低レベルの詳細に苦しむ。
RCTNetはこれらの制限に対処し、早期融合バックボーンを導入して、早期に空間的特徴と時間的特徴の両方を活用する。 \textbf{(2)} 時間的表現を強化するクロスステージアグリゲーション (CSA) モジュール、デコーダにおける特徴抽出を充実させるマルチスケール・フィーチャーフュージョン (MSF) モジュール、そして、トランスフォーマを利用してグローバル情報と正確な変更検出を行うための詳細を詳細に記述したESA (Efficient Self-Deciphering Attention) モジュール。
大規模な実験では、従来のRS画像CD法よりもRCTNetの方が明確な優位性を示し、精度と計算コストの最適なバランスを示す。
関連論文リスト
- RFL-CDNet: Towards Accurate Change Detection via Richer Feature Learning [39.3740222598949]
RFL-CDNetは、よりリッチな特徴学習を利用して変更検出性能を向上させる新しいフレームワークである。
C2FGモジュールは、以前の粗いスケールからのサイド予測を現在の微細スケールの予測にシームレスに統合することを目的としている。
LFモジュールは各ステージと各空間位置の寄与が独立であると仮定し、複数の予測を融合させる学習可能なモジュールを設計する。
論文 参考訳(メタデータ) (2024-04-27T03:07:07Z) - TCCT-Net: Two-Stream Network Architecture for Fast and Efficient Engagement Estimation via Behavioral Feature Signals [58.865901821451295]
本稿では,新しい2ストリーム機能融合 "Tensor-Convolution and Convolution-Transformer Network" (TCCT-Net) アーキテクチャを提案する。
時間空間領域における意味のあるパターンをよりよく学習するために、ハイブリッド畳み込み変換器を統合する「CT」ストリームを設計する。
並行して、時間周波数領域からリッチなパターンを効率的に抽出するために、連続ウェーブレット変換(CWT)を用いて情報を2次元テンソル形式で表現する「TC」ストリームを導入する。
論文 参考訳(メタデータ) (2024-04-15T06:01:48Z) - ELGC-Net: Efficient Local-Global Context Aggregation for Remote Sensing Change Detection [65.59969454655996]
本稿では,変化領域を正確に推定するために,リッチな文脈情報を利用する効率的な変化検出フレームワークELGC-Netを提案する。
提案するELGC-Netは、リモートセンシング変更検出ベンチマークにおいて、最先端の性能を新たに設定する。
また,ELGC-Net-LWも導入した。
論文 参考訳(メタデータ) (2024-03-26T17:46:25Z) - Convolution and Attention Mixer for Synthetic Aperture Radar Image
Change Detection [41.38587746899477]
合成開口レーダ(SAR)画像変化検出は重要な課題であり,リモートセンシングコミュニティで注目されている。
既存のSAR変化検出法は主に畳み込みニューラルネットワーク(CNN)に基づいている
グローバルアテンションを取り入れたコンボリューション・アテンション・ミキサー(CAMixer)を提案する。
論文 参考訳(メタデータ) (2023-09-21T12:28:23Z) - Point-aware Interaction and CNN-induced Refinement Network for RGB-D
Salient Object Detection [95.84616822805664]
我々は,CNNによるトランスフォーマーアーキテクチャを導入し,ポイント・アウェア・インタラクションとCNNによるリファインメントを備えた新しいRGB-D SODネットワークを提案する。
トランスフォーマーがもたらすブロック効果とディテール破壊問題を自然に軽減するために,コンテンツリファインメントとサプリメントのためのCNNRユニットを設計する。
論文 参考訳(メタデータ) (2023-08-17T11:57:49Z) - STNet: Spatial and Temporal feature fusion network for change detection
in remote sensing images [5.258365841490956]
空間的・時間的特徴融合に基づくリモートセンシング変化検出ネットワークSTNetを提案する。
RSCDのための3つのベンチマークデータセットの実験結果から,提案手法が最先端の性能を実現することを示す。
論文 参考訳(メタデータ) (2023-04-22T14:40:41Z) - MCTNet: A Multi-Scale CNN-Transformer Network for Change Detection in
Optical Remote Sensing Images [7.764449276074902]
MCTNetと呼ばれるマルチスケールCNN変換器構造に基づくハイブリッドネットワークを提案する。
MCTNetは既存の最先端CD法よりも優れた検出性能が得られることを示す。
論文 参考訳(メタデータ) (2022-10-14T07:54:28Z) - Cross-receptive Focused Inference Network for Lightweight Image
Super-Resolution [64.25751738088015]
トランスフォーマーに基づく手法は、単一画像超解像(SISR)タスクにおいて顕著な性能を示した。
動的に特徴を抽出するために文脈情報を組み込む必要がある変換器は無視される。
我々は,CNNとTransformerを混合したCTブロックのカスケードで構成される,軽量なクロスレセプティブ・フォーカスド・推論・ネットワーク(CFIN)を提案する。
論文 参考訳(メタデータ) (2022-07-06T16:32:29Z) - Dual Swin-Transformer based Mutual Interactive Network for RGB-D Salient
Object Detection [67.33924278729903]
本研究では,Dual Swin-Transformerを用いたMutual Interactive Networkを提案する。
視覚入力における長距離依存をモデル化するために,RGBと奥行きモードの両方の機能抽出器としてSwin-Transformerを採用している。
5つの標準RGB-D SODベンチマークデータセットに関する総合的な実験は、提案手法の優位性を実証している。
論文 参考訳(メタデータ) (2022-06-07T08:35:41Z) - Cross-Attention in Coupled Unmixing Nets for Unsupervised Hyperspectral
Super-Resolution [79.97180849505294]
本稿では,HSIの空間分解能を高めるために,CUCaNetというクロスアテンション機構を備えた新しい結合型アンミックスネットワークを提案する。
3つの広く使われているHS-MSデータセットに対して、最先端のHSI-SRモデルと比較実験を行った。
論文 参考訳(メタデータ) (2020-07-10T08:08:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。