Learning image representations for anomaly detection: application to
discovery of histological alterations in drug development
- URL: http://arxiv.org/abs/2210.07675v7
- Date: Mon, 8 Jan 2024 20:24:03 GMT
- Title: Learning image representations for anomaly detection: application to
discovery of histological alterations in drug development
- Authors: Igor Zingman, Birgit Stierstorfer, Charlotte Lempp, Fabian Heinemann
- Abstract summary: In histology, normal samples are usually abundant, whereas anomalous (pathological) cases are scarce or not available.
Such approaches combined with pre-trained Convolutional Neural Network (CNN) representations of images were previously employed for anomaly detection (AD)
We show that our approach can be used for toxicity assessment of candidate drugs at early development stages and thereby may reduce expensive late-stage drug attrition.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a system for anomaly detection in histopathological images. In
histology, normal samples are usually abundant, whereas anomalous
(pathological) cases are scarce or not available. Under such settings,
one-class classifiers trained on healthy data can detect out-of-distribution
anomalous samples. Such approaches combined with pre-trained Convolutional
Neural Network (CNN) representations of images were previously employed for
anomaly detection (AD). However, pre-trained off-the-shelf CNN representations
may not be sensitive to abnormal conditions in tissues, while natural
variations of healthy tissue may result in distant representations. To adapt
representations to relevant details in healthy tissue we propose training a CNN
on an auxiliary task that discriminates healthy tissue of different species,
organs, and staining reagents. Almost no additional labeling workload is
required, since healthy samples come automatically with aforementioned labels.
During training we enforce compact image representations with a center-loss
term, which further improves representations for AD. The proposed system
outperforms established AD methods on a published dataset of liver anomalies.
Moreover, it provided comparable results to conventional methods specifically
tailored for quantification of liver anomalies. We show that our approach can
be used for toxicity assessment of candidate drugs at early development stages
and thereby may reduce expensive late-stage drug attrition.
Related papers
- Fine-grained Abnormality Prompt Learning for Zero-shot Anomaly Detection [88.34095233600719]
FAPrompt is a novel framework designed to learn Fine-grained Abnormality Prompts for more accurate ZSAD.
It substantially outperforms state-of-the-art methods by at least 3%-5% AUC/AP in both image- and pixel-level ZSAD tasks.
arXiv Detail & Related papers (2024-10-14T08:41:31Z) - Spatial-aware Attention Generative Adversarial Network for Semi-supervised Anomaly Detection in Medical Image [63.59114880750643]
We introduce a novel Spatial-aware Attention Generative Adrialversa Network (SAGAN) for one-class semi-supervised generation of health images.
SAGAN generates high-quality health images corresponding to unlabeled data, guided by the reconstruction of normal images and restoration of pseudo-anomaly images.
Extensive experiments on three medical datasets demonstrate that the proposed SAGAN outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2024-05-21T15:41:34Z) - Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
This paper introduces a novel lightweight multi-level adaptation and comparison framework to repurpose the CLIP model for medical anomaly detection.
Our approach integrates multiple residual adapters into the pre-trained visual encoder, enabling a stepwise enhancement of visual features across different levels.
Our experiments on medical anomaly detection benchmarks demonstrate that our method significantly surpasses current state-of-the-art models.
arXiv Detail & Related papers (2024-03-19T09:28:19Z) - AnoDODE: Anomaly Detection with Diffusion ODE [0.0]
Anomaly detection is the process of identifying atypical data samples that significantly deviate from the majority of the dataset.
We propose a new anomaly detection method based on diffusion ODEs by estimating the density of features extracted from medical images.
Our proposed method not only identifie anomalies but also provides interpretability at both the image and pixel levels.
arXiv Detail & Related papers (2023-10-10T08:44:47Z) - Reversing the Abnormal: Pseudo-Healthy Generative Networks for Anomaly
Detection [8.737589725372398]
We introduce a novel unsupervised approach, called PHANES (Pseudo Healthy generative networks for ANomaly)
Our method has the capability of reversing anomalies, preserving healthy tissue and replacing anomalous regions with pseudo-healthy reconstructions.
We demonstrate the effectiveness of PHANES in detecting stroke lesions in T1w brain MRI datasets and show significant improvements over state-of-the-art (SOTA) methods.
arXiv Detail & Related papers (2023-03-15T08:54:20Z) - Assessing glaucoma in retinal fundus photographs using Deep Feature
Consistent Variational Autoencoders [63.391402501241195]
glaucoma is challenging to detect since it remains asymptomatic until the symptoms are severe.
Early identification of glaucoma is generally made based on functional, structural, and clinical assessments.
Deep learning methods have partially solved this dilemma by bypassing the marker identification stage and analyzing high-level information directly to classify the data.
arXiv Detail & Related papers (2021-10-04T16:06:49Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
We introduce a novel weakly-supervised anomaly detection framework to train detection models.
The proposed approach learns discriminative normality by leveraging the labeled anomalies and a prior probability.
Our model is substantially more sample-efficient and robust, and performs significantly better than state-of-the-art competing methods in both closed-set and open-set settings.
arXiv Detail & Related papers (2021-08-01T14:33:17Z) - Constrained Contrastive Distribution Learning for Unsupervised Anomaly
Detection and Localisation in Medical Images [23.79184121052212]
Unsupervised anomaly detection (UAD) learns one-class classifiers exclusively with normal (i.e., healthy) images.
We propose a novel self-supervised representation learning method, called Constrained Contrastive Distribution learning for anomaly detection (CCD)
Our method outperforms current state-of-the-art UAD approaches on three different colonoscopy and fundus screening datasets.
arXiv Detail & Related papers (2021-03-05T01:56:58Z) - Unsupervised 3D Brain Anomaly Detection [0.0]
Anomaly detection (AD) is the identification of data samples that do not fit a learned data distribution.
Deep generative models, such as Generative Adrial Networks (GANs), can be exploited to capture anatomical variability.
This study exemplifies the first AD approach that can efficiently handle volumetric data and detect 3D brain anomalies in one model.
arXiv Detail & Related papers (2020-10-09T17:59:17Z) - Manifolds for Unsupervised Visual Anomaly Detection [79.22051549519989]
Unsupervised learning methods that don't necessarily encounter anomalies in training would be immensely useful.
We develop a novel hyperspherical Variational Auto-Encoder (VAE) via stereographic projections with a gyroplane layer.
We present state-of-the-art results on visual anomaly benchmarks in precision manufacturing and inspection, demonstrating real-world utility in industrial AI scenarios.
arXiv Detail & Related papers (2020-06-19T20:41:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.