AnoDODE: Anomaly Detection with Diffusion ODE
- URL: http://arxiv.org/abs/2310.06420v1
- Date: Tue, 10 Oct 2023 08:44:47 GMT
- Title: AnoDODE: Anomaly Detection with Diffusion ODE
- Authors: Xianyao Hu and Congming Jin
- Abstract summary: Anomaly detection is the process of identifying atypical data samples that significantly deviate from the majority of the dataset.
We propose a new anomaly detection method based on diffusion ODEs by estimating the density of features extracted from medical images.
Our proposed method not only identifie anomalies but also provides interpretability at both the image and pixel levels.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Anomaly detection is the process of identifying atypical data samples that
significantly deviate from the majority of the dataset. In the realm of
clinical screening and diagnosis, detecting abnormalities in medical images
holds great importance. Typically, clinical practice provides access to a vast
collection of normal images, while abnormal images are relatively scarce. We
hypothesize that abnormal images and their associated features tend to manifest
in low-density regions of the data distribution. Following this assumption, we
turn to diffusion ODEs for unsupervised anomaly detection, given their
tractability and superior performance in density estimation tasks. More
precisely, we propose a new anomaly detection method based on diffusion ODEs by
estimating the density of features extracted from multi-scale medical images.
Our anomaly scoring mechanism depends on computing the negative log-likelihood
of features extracted from medical images at different scales, quantified in
bits per dimension. Furthermore, we propose a reconstruction-based anomaly
localization suitable for our method. Our proposed method not only identifie
anomalies but also provides interpretability at both the image and pixel
levels. Through experiments on the BraTS2021 medical dataset, our proposed
method outperforms existing methods. These results confirm the effectiveness
and robustness of our method.
Related papers
- GLAD: Towards Better Reconstruction with Global and Local Adaptive Diffusion Models for Unsupervised Anomaly Detection [60.78684630040313]
Diffusion models tend to reconstruct normal counterparts of test images with certain noises added.
From the global perspective, the difficulty of reconstructing images with different anomalies is uneven.
We propose a global and local adaptive diffusion model (abbreviated to GLAD) for unsupervised anomaly detection.
arXiv Detail & Related papers (2024-06-11T17:27:23Z) - Spatial-aware Attention Generative Adversarial Network for Semi-supervised Anomaly Detection in Medical Image [63.59114880750643]
We introduce a novel Spatial-aware Attention Generative Adrialversa Network (SAGAN) for one-class semi-supervised generation of health images.
SAGAN generates high-quality health images corresponding to unlabeled data, guided by the reconstruction of normal images and restoration of pseudo-anomaly images.
Extensive experiments on three medical datasets demonstrate that the proposed SAGAN outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2024-05-21T15:41:34Z) - Discrepancy-based Diffusion Models for Lesion Detection in Brain MRI [1.8420387715849447]
Diffusion probabilistic models (DPMs) have exhibited significant effectiveness in computer vision tasks.
Their notable performance heavily relies on labelled datasets, which limits their application in medical images.
This paper introduces a novel framework by incorporating distinctive discrepancy features.
arXiv Detail & Related papers (2024-05-08T11:26:49Z) - Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
This paper introduces a novel lightweight multi-level adaptation and comparison framework to repurpose the CLIP model for medical anomaly detection.
Our approach integrates multiple residual adapters into the pre-trained visual encoder, enabling a stepwise enhancement of visual features across different levels.
Our experiments on medical anomaly detection benchmarks demonstrate that our method significantly surpasses current state-of-the-art models.
arXiv Detail & Related papers (2024-03-19T09:28:19Z) - AnomalyDiffusion: Few-Shot Anomaly Image Generation with Diffusion Model [59.08735812631131]
Anomaly inspection plays an important role in industrial manufacture.
Existing anomaly inspection methods are limited in their performance due to insufficient anomaly data.
We propose AnomalyDiffusion, a novel diffusion-based few-shot anomaly generation model.
arXiv Detail & Related papers (2023-12-10T05:13:40Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
Pathological brain lesions exhibit diverse appearance in brain images.
Unsupervised anomaly detection approaches have been proposed using only normal data for training.
We show that optimization of the spatial resolution and magnitude of the noise improves the performance of different model training regimes.
arXiv Detail & Related papers (2023-01-19T21:39:38Z) - Dual-distribution discrepancy with self-supervised refinement for
anomaly detection in medical images [29.57501199670898]
We introduce one-class semi-supervised learning (OC-SSL) to utilize known normal and unlabeled images for training.
Ensembles of reconstruction networks are designed to model the distribution of normal images and the distribution of both normal and unlabeled images.
We propose a new perspective on self-supervised learning, which is designed to refine the anomaly scores rather than detect anomalies directly.
arXiv Detail & Related papers (2022-10-09T11:18:45Z) - Diffusion Models for Medical Anomaly Detection [0.8999666725996974]
We present a novel weakly supervised anomaly detection method based on denoising diffusion implicit models.
Our method generates very detailed anomaly maps without the need for a complex training procedure.
arXiv Detail & Related papers (2022-03-08T12:35:07Z) - Unsupervised Anomaly Detection in MR Images using Multi-Contrast
Information [3.7273619690170796]
Anomaly detection in medical imaging is to distinguish the relevant biomarkers of diseases from those of normal tissues.
Deep supervised learning methods have shown potentials in various detection tasks, but its performances would be limited in medical imaging fields.
In this paper, we developed an unsupervised learning framework for pixel-wise anomaly detection in multi-contrast MRI.
arXiv Detail & Related papers (2021-05-02T13:05:36Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z) - Anomaly Detection in Medical Imaging with Deep Perceptual Autoencoders [1.7277957019593995]
We introduce a new powerful method of image anomaly detection.
It relies on the classical autoencoder approach with a re-designed training pipeline.
It outperforms state-of-the-art approaches in complex medical image analysis tasks.
arXiv Detail & Related papers (2020-06-23T18:45:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.