Learning Correction Errors via Frequency-Self Attention for Blind Image
Super-Resolution
- URL: http://arxiv.org/abs/2403.07390v1
- Date: Tue, 12 Mar 2024 07:58:14 GMT
- Title: Learning Correction Errors via Frequency-Self Attention for Blind Image
Super-Resolution
- Authors: Haochen Sun, Yan Yuan, Lijuan Su and Haotian Shao
- Abstract summary: We introduce a novel blind SR approach that focuses on Learning Correction Errors (LCE)
Within an SR network, we jointly optimize SR performance by utilizing both the original LR image and the frequency learning of the CLR image.
Our approach effectively addresses the challenges associated with degradation estimation and correction errors, paving the way for more accurate blind image SR.
- Score: 1.734165485480267
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Previous approaches for blind image super-resolution (SR) have relied on
degradation estimation to restore high-resolution (HR) images from their
low-resolution (LR) counterparts. However, accurate degradation estimation
poses significant challenges. The SR model's incompatibility with degradation
estimation methods, particularly the Correction Filter, may significantly
impair performance as a result of correction errors. In this paper, we
introduce a novel blind SR approach that focuses on Learning Correction Errors
(LCE). Our method employs a lightweight Corrector to obtain a corrected
low-resolution (CLR) image. Subsequently, within an SR network, we jointly
optimize SR performance by utilizing both the original LR image and the
frequency learning of the CLR image. Additionally, we propose a new
Frequency-Self Attention block (FSAB) that enhances the global information
utilization ability of Transformer. This block integrates both self-attention
and frequency spatial attention mechanisms. Extensive ablation and comparison
experiments conducted across various settings demonstrate the superiority of
our method in terms of visual quality and accuracy. Our approach effectively
addresses the challenges associated with degradation estimation and correction
errors, paving the way for more accurate blind image SR.
Related papers
- Efficient Test-Time Adaptation for Super-Resolution with Second-Order
Degradation and Reconstruction [62.955327005837475]
Image super-resolution (SR) aims to learn a mapping from low-resolution (LR) to high-resolution (HR) using paired HR-LR training images.
We present an efficient test-time adaptation framework for SR, named SRTTA, which is able to quickly adapt SR models to test domains with different/unknown degradation types.
arXiv Detail & Related papers (2023-10-29T13:58:57Z) - Learning from Multi-Perception Features for Real-Word Image
Super-resolution [87.71135803794519]
We propose a novel SR method called MPF-Net that leverages multiple perceptual features of input images.
Our method incorporates a Multi-Perception Feature Extraction (MPFE) module to extract diverse perceptual information.
We also introduce a contrastive regularization term (CR) that improves the model's learning capability.
arXiv Detail & Related papers (2023-05-26T07:35:49Z) - DCS-RISR: Dynamic Channel Splitting for Efficient Real-world Image
Super-Resolution [15.694407977871341]
Real-world image super-resolution (RISR) has received increased focus for improving the quality of SR images under unknown complex degradation.
Existing methods rely on the heavy SR models to enhance low-resolution (LR) images of different degradation levels.
We propose a novel Dynamic Channel Splitting scheme for efficient Real-world Image Super-Resolution, termed DCS-RISR.
arXiv Detail & Related papers (2022-12-15T04:34:57Z) - Real Image Super-Resolution using GAN through modeling of LR and HR
process [20.537597542144916]
We propose a learnable adaptive sinusoidal nonlinearities incorporated in LR and SR models by directly learn degradation distributions.
We demonstrate the effectiveness of our proposed approach in quantitative and qualitative experiments.
arXiv Detail & Related papers (2022-10-19T09:23:37Z) - Blind Super-Resolution for Remote Sensing Images via Conditional
Stochastic Normalizing Flows [14.882417028542855]
We propose a novel blind SR framework based on the normalizing flow (BlindSRSNF) to address the above problems.
BlindSRSNF learns the conditional probability distribution over the high-resolution image space given a low-resolution (LR) image by explicitly optimizing the variational bound on the likelihood.
We show that the proposed algorithm can obtain SR results with excellent visual perception quality on both simulated LR and real-world RSIs.
arXiv Detail & Related papers (2022-10-14T12:37:32Z) - Toward Real-world Image Super-resolution via Hardware-based Adaptive
Degradation Models [3.9037347042028254]
Most single image super-resolution (SR) methods are developed on synthetic low-resolution (LR) and high-resolution (HR) image pairs.
We propose a novel supervised method to simulate an unknown degradation process with the inclusion of prior hardware knowledge.
Experiments on the real-world datasets validate that our degradation model can estimate LR images more accurately than the predetermined degradation operation.
arXiv Detail & Related papers (2021-10-20T19:53:48Z) - Hierarchical Conditional Flow: A Unified Framework for Image
Super-Resolution and Image Rescaling [139.25215100378284]
We propose a hierarchical conditional flow (HCFlow) as a unified framework for image SR and image rescaling.
HCFlow learns a mapping between HR and LR image pairs by modelling the distribution of the LR image and the rest high-frequency component simultaneously.
To further enhance the performance, other losses such as perceptual loss and GAN loss are combined with the commonly used negative log-likelihood loss in training.
arXiv Detail & Related papers (2021-08-11T16:11:01Z) - Perception Consistency Ultrasound Image Super-resolution via
Self-supervised CycleGAN [63.49373689654419]
We propose a new perception consistency ultrasound image super-resolution (SR) method based on self-supervision and cycle generative adversarial network (CycleGAN)
We first generate the HR fathers and the LR sons of the test ultrasound LR image through image enhancement.
We then make full use of the cycle loss of LR-SR-LR and HR-LR-SR and the adversarial characteristics of the discriminator to promote the generator to produce better perceptually consistent SR results.
arXiv Detail & Related papers (2020-12-28T08:24:04Z) - Frequency Consistent Adaptation for Real World Super Resolution [64.91914552787668]
We propose a novel Frequency Consistent Adaptation (FCA) that ensures the frequency domain consistency when applying Super-Resolution (SR) methods to the real scene.
We estimate degradation kernels from unsupervised images and generate the corresponding Low-Resolution (LR) images.
Based on the domain-consistent LR-HR pairs, we train easy-implemented Convolutional Neural Network (CNN) SR models.
arXiv Detail & Related papers (2020-12-18T08:25:39Z) - Characteristic Regularisation for Super-Resolving Face Images [81.84939112201377]
Existing facial image super-resolution (SR) methods focus mostly on improving artificially down-sampled low-resolution (LR) imagery.
Previous unsupervised domain adaptation (UDA) methods address this issue by training a model using unpaired genuine LR and HR data.
This renders the model overstretched with two tasks: consistifying the visual characteristics and enhancing the image resolution.
We formulate a method that joins the advantages of conventional SR and UDA models.
arXiv Detail & Related papers (2019-12-30T16:27:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.