Entropy of the quantum work distribution
- URL: http://arxiv.org/abs/2210.07896v2
- Date: Wed, 3 May 2023 07:03:38 GMT
- Title: Entropy of the quantum work distribution
- Authors: Anthony Kiely, Eoin O'Connor, Thom\'as Fogarty, Gabriel T. Landi,
Steve Campbell
- Abstract summary: We show how the Shannon entropy of the work distribution admits a general upper bound depending on the initial diagonal entropy.
We demonstrate that this approach captures strong signatures of the underlying physics in a diverse range of settings.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The statistics of work done on a quantum system can be quantified by the
two-point measurement scheme. We show how the Shannon entropy of the work
distribution admits a general upper bound depending on the initial diagonal
entropy, and a purely quantum term associated to the relative entropy of
coherence. We demonstrate that this approach captures strong signatures of the
underlying physics in a diverse range of settings. In particular, we carry out
a detailed study of the Aubry-Andr\'e-Harper model and show that the entropy of
the work distribution conveys very clearly the physics of the localization
transition, which is not apparent from the statistical moments.
Related papers
- One-Shot Min-Entropy Calculation And Its Application To Quantum Cryptography [21.823963925581868]
We develop a one-shot lower bound calculation technique for the min-entropy of a classical-quantum state.
It gives an alternative tight finite-data analysis for the well-known BB84 quantum key distribution protocol.
It provides a security proof for a novel source-independent continuous-variable quantum random number generation protocol.
arXiv Detail & Related papers (2024-06-21T15:11:26Z) - Area laws and thermalization from classical entropies in a Bose-Einstein condensate [0.0]
Local quantum entropies are nonlinear functionals of the underlying quantum state.
We show that suitably chosen classical entropies capture the very same features as their quantum analogs.
arXiv Detail & Related papers (2024-04-18T16:53:03Z) - Excited stated quantum phase transitions and the entropy of the work
distribution in the anharmonic Lipkin-Meshkov-Glick model [6.4921082576021725]
In this work, we delve into the affects and characterizations of the excited state quantum phase transitions (ESQPTs) in the anharmonic Lipkin-Meshkov-Glick (LMG) model.
The entropy of the work distribution measures the complexity of the work distribution and behaves as a valuable tool for analyzing nonequilibrium work statistics.
arXiv Detail & Related papers (2023-10-22T12:34:21Z) - Enhanced Entanglement in the Measurement-Altered Quantum Ising Chain [46.99825956909532]
Local quantum measurements do not simply disentangle degrees of freedom, but may actually strengthen the entanglement in the system.
This paper explores how a finite density of local measurement modifies a given state's entanglement structure.
arXiv Detail & Related papers (2023-10-04T09:51:00Z) - Continuously Monitored Quantum Systems beyond Lindblad Dynamics [68.8204255655161]
We study the probability distribution of the expectation value of a given observable over the possible quantum trajectories.
The measurements are applied to the entire system, having the effect of projecting the system into a product state.
arXiv Detail & Related papers (2023-05-06T18:09:17Z) - Quasiprobability distribution of work in the quantum Ising model [0.0]
We try to clarify the genuinely quantum features of the process by studying the work quasiprobability for an Ising model in a transverse field.
We examine the critical features related to a quantum phase transition and the role of the initial quantum coherence as useful resource.
arXiv Detail & Related papers (2023-02-22T10:07:49Z) - Full counting statistics as probe of measurement-induced transitions in
the quantum Ising chain [62.997667081978825]
We show that local projective measurements induce a modification of the out-of-equilibrium probability distribution function of the local magnetization.
In particular we describe how the probability distribution of the former shows different behaviour in the area-law and volume-law regimes.
arXiv Detail & Related papers (2022-12-19T12:34:37Z) - Quantum state inference from coarse-grained descriptions: analysis and
an application to quantum thermodynamics [101.18253437732933]
We compare the Maximum Entropy Principle method, with the recently proposed Average Assignment Map method.
Despite the fact that the assigned descriptions respect the measured constraints, the descriptions differ in scenarios that go beyond the traditional system-environment structure.
arXiv Detail & Related papers (2022-05-16T19:42:24Z) - Class of quasiprobability distributions of work and initial quantum
coherence [0.0]
We study a class of quasiprobability distributions of work, which give an average work equal to the average energy change of the system.
We find a fluctuation theorem involving quantum coherence, from which follows a second law of thermodynamics.
arXiv Detail & Related papers (2021-10-03T10:56:07Z) - The First Law of Quantum Field Thermodynamics [0.0]
We show that the most common definitions used in finite-dimensional quantum systems cannot be applied to quantum field theory (QFT)
We propose work distributions that are compatible with QFT and we show that they satisfy the first law of thermodynamics up to second moments.
arXiv Detail & Related papers (2020-08-20T18:16:26Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.