The First Law of Quantum Field Thermodynamics
- URL: http://arxiv.org/abs/2008.09146v2
- Date: Wed, 18 Nov 2020 19:43:46 GMT
- Title: The First Law of Quantum Field Thermodynamics
- Authors: Adam Teixid\'o-Bonfill, Alvaro Ortega and Eduardo Mart\'in-Mart\'inez
- Abstract summary: We show that the most common definitions used in finite-dimensional quantum systems cannot be applied to quantum field theory (QFT)
We propose work distributions that are compatible with QFT and we show that they satisfy the first law of thermodynamics up to second moments.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the notion of work fluctuations in quantum field theory,
highlighting that the most common definitions used in finite-dimensional
quantum systems cannot be applied to quantum field theory (QFT). Then we
propose work distributions that are compatible with QFT and we show that they
satisfy the first law of thermodynamics up to second moments. We also show how
these distributions satisfy Crooks theorem and provide a fully non-perturbative
thermodynamic analysis of spacetime localized unitary processes on a quantum
field.
Related papers
- Generalized Quantum Stein's Lemma and Second Law of Quantum Resource Theories [47.02222405817297]
A fundamental question in quantum information theory is whether an analogous second law can be formulated to characterize the convertibility of resources for quantum information processing by a single function.
In 2008, a promising formulation was proposed, linking resource convertibility to the optimal performance of a variant of the quantum version of hypothesis testing.
In 2023, a logical gap was found in the original proof of this lemma, casting doubt on the possibility of such a formulation of the second law.
arXiv Detail & Related papers (2024-08-05T18:00:00Z) - Universal Upper Bound on Ergotropy and No-Go Theorem by the Eigenstate Thermalization Hypothesis [9.361474110798143]
We show that the maximum extractable work (ergotropy) from a quantum many-body system is constrained by local athermality of an initial state and local entropy decrease brought about by quantum operations.
Our result bridges two independently studied concepts of quantum thermodynamics, the second law and thermalization, via intrasystem correlations in many-body systems as a resource for work extraction.
arXiv Detail & Related papers (2024-06-17T00:20:33Z) - Unification of the first law of quantum thermodynamics [0.0]
Underlying the classical thermodynamic principles are analogous microscopic laws, arising from the fundamental axioms of quantum mechanics.
The foremost quantum thermodynamic law is a simple statement concerning the conservation of energy.
There exist ambiguity and disagreement regarding the precise partition of a quantum system's energy change to work and heat.
arXiv Detail & Related papers (2022-08-22T19:36:41Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Correspondence Between the Energy Equipartition Theorem in Classical
Mechanics and its Phase-Space Formulation in Quantum Mechanics [62.997667081978825]
In quantum mechanics, the energy per degree of freedom is not equally distributed.
We show that in the high-temperature regime, the classical result is recovered.
arXiv Detail & Related papers (2022-05-24T20:51:03Z) - Maximum entropy quantum state distributions [58.720142291102135]
We go beyond traditional thermodynamics and condition on the full distribution of the conserved quantities.
The result are quantum state distributions whose deviations from thermal states' get more pronounced in the limit of wide input distributions.
arXiv Detail & Related papers (2022-03-23T17:42:34Z) - Open-system approach to nonequilibrium quantum thermodynamics at
arbitrary coupling [77.34726150561087]
We develop a general theory describing the thermodynamical behavior of open quantum systems coupled to thermal baths.
Our approach is based on the exact time-local quantum master equation for the reduced open system states.
arXiv Detail & Related papers (2021-09-24T11:19:22Z) - Catalytic Entropy Principles [1.2691047660244335]
entropy shows an unavoidable tendency of disorder in thermostatistics according to the second thermodynamics law.
We present the first unified principle consistent with the second thermodynamics law in terms of general quantum entropies.
Results should be interesting in the many-body theory and long-range quantum information processing.
arXiv Detail & Related papers (2021-04-08T01:13:36Z) - Quantum and classical ergotropy from relative entropies [0.0]
The quantum ergotropy quantifies the maximal amount of work that can be extracted from a quantum state without changing its entropy.
A unified approach to treat both quantum as well as classical scenarios is provided by geometric quantum mechanics.
arXiv Detail & Related papers (2021-03-19T15:07:26Z) - Experimental Validation of Fully Quantum Fluctuation Theorems Using
Dynamic Bayesian Networks [48.7576911714538]
Fluctuation theorems are fundamental extensions of the second law of thermodynamics for small systems.
We experimentally verify detailed and integral fully quantum fluctuation theorems for heat exchange using two quantum-correlated thermal spins-1/2 in a nuclear magnetic resonance setup.
arXiv Detail & Related papers (2020-12-11T12:55:17Z) - Geometric Quantum Thermodynamics [0.0]
Building on parallels between geometric quantum mechanics and classical mechanics, we explore an alternative basis for quantum thermodynamics.
We develop both microcanonical and canonical ensembles, introducing continuous mixed states as distributions on the manifold of quantum states.
We give both the First and Second Laws of Thermodynamics and Jarzynki's Fluctuation Theorem.
arXiv Detail & Related papers (2020-08-19T21:55:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.