QuAnt: Quantum Annealing with Learnt Couplings
- URL: http://arxiv.org/abs/2210.08114v1
- Date: Thu, 13 Oct 2022 17:59:46 GMT
- Title: QuAnt: Quantum Annealing with Learnt Couplings
- Authors: Marcel Seelbach Benkner, Maximilian Krahn, Edith Tretschk, Zorah
L\"ahner, Michael Moeller, Vladislav Golyanik
- Abstract summary: We learn QUBO forms from data through gradient backpropagation instead of deriving them.
We demonstrate the advantages of learnt QUBOs on the diverse problem types of graph matching, 2D point cloud alignment and 3D rotation estimation.
- Score: 18.40480332882025
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern quantum annealers can find high-quality solutions to combinatorial
optimisation objectives given as quadratic unconstrained binary optimisation
(QUBO) problems. Unfortunately, obtaining suitable QUBO forms in computer
vision remains challenging and currently requires problem-specific analytical
derivations. Moreover, such explicit formulations impose tangible constraints
on solution encodings. In stark contrast to prior work, this paper proposes to
learn QUBO forms from data through gradient backpropagation instead of deriving
them. As a result, the solution encodings can be chosen flexibly and compactly.
Furthermore, our methodology is general and virtually independent of the
specifics of the target problem type. We demonstrate the advantages of learnt
QUBOs on the diverse problem types of graph matching, 2D point cloud alignment
and 3D rotation estimation. Our results are competitive with the previous
quantum state of the art while requiring much fewer logical and physical
qubits, enabling our method to scale to larger problems. The code and the new
dataset will be open-sourced.
Related papers
- Quantum Algorithms for Drone Mission Planning [0.0]
Mission planning often involves optimising the use of ISR (Intelligence, Surveillance and Reconnaissance) assets in order to achieve a set of mission objectives.
Finding such solutions is often an NP-Hard problem and cannot be solved efficiently on classical computers.
We investigate near term quantum algorithms that have the potential to offer speed-ups against current classical methods.
arXiv Detail & Related papers (2024-09-27T10:58:25Z) - Optimized QUBO formulation methods for quantum computing [0.4999814847776097]
We show how to apply our techniques in case of an NP-hard optimization problem inspired by a real-world financial scenario.
We follow by submitting instances of this problem to two D-wave quantum annealers, comparing the performances of our novel approach with the standard methods used in these scenarios.
arXiv Detail & Related papers (2024-06-11T19:59:05Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
We introduce a novel theoretical framework for analyzing the effectiveness of DeepMatching Networks and Reinforcement Learning methods.
Our main contribution holds for a broad class of problems including Max-and Min-Cut, Max-$k$-Bipartite-Bi, Maximum-Weight-Bipartite-Bi, and Traveling Salesman Problem.
As a byproduct of our analysis we introduce a novel regularization process over vanilla descent and provide theoretical and experimental evidence that it helps address vanishing-gradient issues and escape bad stationary points.
arXiv Detail & Related papers (2023-10-08T23:39:38Z) - A Study of Scalarisation Techniques for Multi-Objective QUBO Solving [0.0]
Quantum and quantum-inspired optimisation algorithms have shown promising performance when applied to academic benchmarks as well as real-world problems.
However, QUBO solvers are single objective solvers. To make them more efficient at solving problems with multiple objectives, a decision on how to convert such multi-objective problems to single-objective problems need to be made.
arXiv Detail & Related papers (2022-10-20T14:54:37Z) - Optimization of Robot Trajectory Planning with Nature-Inspired and
Hybrid Quantum Algorithms [0.0]
We solve robot trajectory planning problems at industry-relevant scales.
Our end-to-end solution integrates highly versatile random-key algorithms with model stacking and ensemble techniques.
We show how the latter can be integrated into our larger pipeline, providing a quantum-ready hybrid solution to the problem.
arXiv Detail & Related papers (2022-06-08T02:38:32Z) - Quantum Feature Selection [2.5934039615414615]
In machine learning, fewer features reduce model complexity.
We propose a novel feature selection algorithm based on a quadratic unconstrained binary optimization problem.
In contrast to iterative or greedy methods, our direct approach yields higherquality solutions.
arXiv Detail & Related papers (2022-03-24T16:22:25Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
Multi-Object Tracking (MOT) is most often approached in the tracking-by-detection paradigm, where object detections are associated through time.
As these optimization problems are often NP-hard, they can only be solved exactly for small instances on current hardware.
We show that our approach is competitive compared with state-of-the-art optimization-based approaches, even when using of-the-shelf integer programming solvers.
arXiv Detail & Related papers (2022-02-17T18:59:20Z) - Quadratic Unconstrained Binary Optimisation via Quantum-Inspired
Annealing [58.720142291102135]
We present a classical algorithm to find approximate solutions to instances of quadratic unconstrained binary optimisation.
We benchmark our approach for large scale problem instances with tuneable hardness and planted solutions.
arXiv Detail & Related papers (2021-08-18T09:26:17Z) - Adiabatic Quantum Graph Matching with Permutation Matrix Constraints [75.88678895180189]
Matching problems on 3D shapes and images are frequently formulated as quadratic assignment problems (QAPs) with permutation matrix constraints, which are NP-hard.
We propose several reformulations of QAPs as unconstrained problems suitable for efficient execution on quantum hardware.
The proposed algorithm has the potential to scale to higher dimensions on future quantum computing architectures.
arXiv Detail & Related papers (2021-07-08T17:59:55Z) - A Bi-Level Framework for Learning to Solve Combinatorial Optimization on
Graphs [91.07247251502564]
We propose a hybrid approach to combine the best of the two worlds, in which a bi-level framework is developed with an upper-level learning method to optimize the graph.
Such a bi-level approach simplifies the learning on the original hard CO and can effectively mitigate the demand for model capacity.
arXiv Detail & Related papers (2021-06-09T09:18:18Z) - Q-Match: Iterative Shape Matching via Quantum Annealing [64.74942589569596]
Finding shape correspondences can be formulated as an NP-hard quadratic assignment problem (QAP)
This paper proposes Q-Match, a new iterative quantum method for QAPs inspired by the alpha-expansion algorithm.
Q-Match can be applied for shape matching problems iteratively, on a subset of well-chosen correspondences, allowing us to scale to real-world problems.
arXiv Detail & Related papers (2021-05-06T17:59:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.