Quantum Algorithms for Drone Mission Planning
- URL: http://arxiv.org/abs/2409.18631v1
- Date: Fri, 27 Sep 2024 10:58:25 GMT
- Title: Quantum Algorithms for Drone Mission Planning
- Authors: Ethan Davies, Pranav Kalidindi,
- Abstract summary: Mission planning often involves optimising the use of ISR (Intelligence, Surveillance and Reconnaissance) assets in order to achieve a set of mission objectives.
Finding such solutions is often an NP-Hard problem and cannot be solved efficiently on classical computers.
We investigate near term quantum algorithms that have the potential to offer speed-ups against current classical methods.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mission planning often involves optimising the use of ISR (Intelligence, Surveillance and Reconnaissance) assets in order to achieve a set of mission objectives within allowed parameters subject to constraints. The missions of interest here, involve routing multiple UAVs visiting multiple targets, utilising sensors to capture data relating to each target. Finding such solutions is often an NP-Hard problem and cannot be solved efficiently on classical computers. Furthermore, during the mission new constraints and objectives may arise, requiring a new solution to be computed within a short time period. To achieve this we investigate near term quantum algorithms that have the potential to offer speed-ups against current classical methods. We demonstrate how a large family of these problems can be formulated as a Mixed Integer Linear Program (MILP) and then converted to a Quadratic Unconstrained Binary Optimisation (QUBO). The formulation provided is versatile and can be adapted for many different constraints with clear qubit scaling provided. We discuss the results of solving the QUBO formulation using commercial quantum annealers and compare the solutions to current edge classical solvers. We also analyse the results from solving the QUBO using Quantum Approximate Optimisation Algorithms (QAOA) and discuss their results. Finally, we also provide efficient methods to encode to the problem into the Variational Quantum Eigensolver (VQE) formalism, where we have tailored the ansatz to the problem making efficient use of the qubits available.
Related papers
- Reinforcement Learning for Variational Quantum Circuits Design [10.136215038345012]
Variational Quantum Algorithms have emerged as promising tools for solving optimization problems on quantum computers.
In this study, we leverage the powerful and flexible Reinforcement Learning paradigm to train an agent capable of autonomously generating quantum circuits.
Our results indicate that the $R_yz$-connected circuit achieves high approximation ratios for Maximum Cut problems.
arXiv Detail & Related papers (2024-09-09T10:07:12Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - Quantum Optimization Methods for Satellite Mission Planning [0.3252295747842729]
The ever-growing amount of satellites in orbit underscores the need to operate them efficiently.
Current classical algorithms often fail to find the global optimum or take too long to execute.
Here, we approach the problem from a quantum computing point of view, which offers a promising alternative.
arXiv Detail & Related papers (2024-04-08T13:36:29Z) - Measurement-Based Quantum Approximate Optimization [0.24861619769660645]
We focus on measurement-based quantum computing protocols for approximate optimization.
We derive measurement patterns for applying QAOA to the broad and important class of QUBO problems.
We discuss the resource requirements and tradeoffs of our approach to that of more traditional quantum circuits.
arXiv Detail & Related papers (2024-03-18T06:59:23Z) - Probabilistic Sampling of Balanced K-Means using Adiabatic Quantum Computing [93.83016310295804]
AQCs allow to implement problems of research interest, which has sparked the development of quantum representations for computer vision tasks.
In this work, we explore the potential of using this information for probabilistic balanced k-means clustering.
Instead of discarding non-optimal solutions, we propose to use them to compute calibrated posterior probabilities with little additional compute cost.
This allows us to identify ambiguous solutions and data points, which we demonstrate on a D-Wave AQC on synthetic tasks and real visual data.
arXiv Detail & Related papers (2023-10-18T17:59:45Z) - A Review on Quantum Approximate Optimization Algorithm and its Variants [47.89542334125886]
The Quantum Approximate Optimization Algorithm (QAOA) is a highly promising variational quantum algorithm that aims to solve intractable optimization problems.
This comprehensive review offers an overview of the current state of QAOA, encompassing its performance analysis in diverse scenarios.
We conduct a comparative study of selected QAOA extensions and variants, while exploring future prospects and directions for the algorithm.
arXiv Detail & Related papers (2023-06-15T15:28:12Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
Multi-Object Tracking (MOT) is most often approached in the tracking-by-detection paradigm, where object detections are associated through time.
As these optimization problems are often NP-hard, they can only be solved exactly for small instances on current hardware.
We show that our approach is competitive compared with state-of-the-art optimization-based approaches, even when using of-the-shelf integer programming solvers.
arXiv Detail & Related papers (2022-02-17T18:59:20Z) - Quantum constraint learning for quantum approximate optimization
algorithm [0.0]
This paper introduces a quantum machine learning approach to learn the mixer Hamiltonian required to hard constrain the search subspace.
One can directly plug the learnt unitary into the QAOA framework using an adaptable ansatz.
We also develop an intuitive metric that uses Wasserstein distance to assess the performance of general approximate optimization algorithms with/without constraints.
arXiv Detail & Related papers (2021-05-14T11:31:14Z) - Larger Sparse Quadratic Assignment Problem Optimization Using Quantum
Annealing and a Bit-Flip Heuristic Algorithm [0.4125187280299248]
Linear constraints reduce the size of problems that can be represented in quantum annealers.
We propose a method for solving a sparse QAP by applying a post-processing bit-flip algorithm to solutions obtained by the Ohzeki method.
We successfully solved a QAP of size 19 with high accuracy for the first time using D-Wave Advantage.
arXiv Detail & Related papers (2020-12-18T09:48:28Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.