IBL-NeRF: Image-Based Lighting Formulation of Neural Radiance Fields
- URL: http://arxiv.org/abs/2210.08202v2
- Date: Tue, 12 Sep 2023 01:36:47 GMT
- Title: IBL-NeRF: Image-Based Lighting Formulation of Neural Radiance Fields
- Authors: Changwoon Choi, Juhyeon Kim, Young Min Kim
- Abstract summary: We propose IBL-NeRF, which decomposes the neural radiance fields (NeRF) of large-scale indoor scenes into intrinsic components.
Our approach inherits superior visual quality and multi-view consistency for synthesized images as well as the intrinsic components.
- Score: 12.056350920398396
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose IBL-NeRF, which decomposes the neural radiance fields (NeRF) of
large-scale indoor scenes into intrinsic components. Recent approaches further
decompose the baked radiance of the implicit volume into intrinsic components
such that one can partially approximate the rendering equation. However, they
are limited to representing isolated objects with a shared environment
lighting, and suffer from computational burden to aggregate rays with Monte
Carlo integration. In contrast, our prefiltered radiance field extends the
original NeRF formulation to capture the spatial variation of lighting within
the scene volume, in addition to surface properties. Specifically, the scenes
of diverse materials are decomposed into intrinsic components for rendering,
namely, albedo, roughness, surface normal, irradiance, and prefiltered
radiance. All of the components are inferred as neural images from MLP, which
can model large-scale general scenes. Especially the prefiltered radiance
effectively models the volumetric light field, and captures spatial variation
beyond a single environment light. The prefiltering aggregates rays in a set of
predefined neighborhood sizes such that we can replace the costly Monte Carlo
integration of global illumination with a simple query from a neural image. By
adopting NeRF, our approach inherits superior visual quality and multi-view
consistency for synthesized images as well as the intrinsic components. We
demonstrate the performance on scenes with complex object layouts and light
configurations, which could not be processed in any of the previous works.
Related papers
- Relighting Scenes with Object Insertions in Neural Radiance Fields [24.18050535794117]
We propose a novel NeRF-based pipeline for inserting object NeRFs into scene NeRFs.
The proposed method achieves realistic relighting effects in extensive experimental evaluations.
arXiv Detail & Related papers (2024-06-21T00:58:58Z) - NeRF-Casting: Improved View-Dependent Appearance with Consistent Reflections [57.63028964831785]
Recent works have improved NeRF's ability to render detailed specular appearance of distant environment illumination, but are unable to synthesize consistent reflections of closer content.
We address these issues with an approach based on ray tracing.
Instead of querying an expensive neural network for the outgoing view-dependent radiance at points along each camera ray, our model casts rays from these points and traces them through the NeRF representation to render feature vectors.
arXiv Detail & Related papers (2024-05-23T17:59:57Z) - SplitNeRF: Split Sum Approximation Neural Field for Joint Geometry,
Illumination, and Material Estimation [65.99344783327054]
We present a novel approach for digitizing real-world objects by estimating their geometry, material properties, and lighting.
Our method incorporates into Radiance Neural Field (NeRF) pipelines the split sum approximation used with image-based lighting for real-time physical-based rendering.
Our method is capable of attaining state-of-the-art relighting quality after only $sim1$ hour of training in a single NVIDIA A100 GPU.
arXiv Detail & Related papers (2023-11-28T10:36:36Z) - NeuS-PIR: Learning Relightable Neural Surface using Pre-Integrated Rendering [23.482941494283978]
This paper presents a method, namely NeuS-PIR, for recovering relightable neural surfaces from multi-view images or video.
Unlike methods based on NeRF and discrete meshes, our method utilizes implicit neural surface representation to reconstruct high-quality geometry.
Our method enables advanced applications such as relighting, which can be seamlessly integrated with modern graphics engines.
arXiv Detail & Related papers (2023-06-13T09:02:57Z) - Multi-Space Neural Radiance Fields [74.46513422075438]
Existing Neural Radiance Fields (NeRF) methods suffer from the existence of reflective objects.
We propose a multi-space neural radiance field (MS-NeRF) that represents the scene using a group of feature fields in parallel sub-spaces.
Our approach significantly outperforms the existing single-space NeRF methods for rendering high-quality scenes.
arXiv Detail & Related papers (2023-05-07T13:11:07Z) - NeAI: A Pre-convoluted Representation for Plug-and-Play Neural Ambient
Illumination [28.433403714053103]
We propose a framework named neural ambient illumination (NeAI)
NeAI uses Neural Radiance Fields (NeRF) as a lighting model to handle complex lighting in a physically based way.
Experiments demonstrate the superior performance of novel-view rendering compared to previous works.
arXiv Detail & Related papers (2023-04-18T06:32:30Z) - Neural Fields meet Explicit Geometric Representation for Inverse
Rendering of Urban Scenes [62.769186261245416]
We present a novel inverse rendering framework for large urban scenes capable of jointly reconstructing the scene geometry, spatially-varying materials, and HDR lighting from a set of posed RGB images with optional depth.
Specifically, we use a neural field to account for the primary rays, and use an explicit mesh (reconstructed from the underlying neural field) for modeling secondary rays that produce higher-order lighting effects such as cast shadows.
arXiv Detail & Related papers (2023-04-06T17:51:54Z) - NeRFactor: Neural Factorization of Shape and Reflectance Under an
Unknown Illumination [60.89737319987051]
We address the problem of recovering shape and spatially-varying reflectance of an object from posed multi-view images of the object illuminated by one unknown lighting condition.
This enables the rendering of novel views of the object under arbitrary environment lighting and editing of the object's material properties.
arXiv Detail & Related papers (2021-06-03T16:18:01Z) - MVSNeRF: Fast Generalizable Radiance Field Reconstruction from
Multi-View Stereo [52.329580781898116]
We present MVSNeRF, a novel neural rendering approach that can efficiently reconstruct neural radiance fields for view synthesis.
Unlike prior works on neural radiance fields that consider per-scene optimization on densely captured images, we propose a generic deep neural network that can reconstruct radiance fields from only three nearby input views via fast network inference.
arXiv Detail & Related papers (2021-03-29T13:15:23Z) - Object-Centric Neural Scene Rendering [19.687759175741824]
We present a method for composing photorealistic scenes from captured images of objects.
Our work builds upon neural radiance fields (NeRFs), which implicitly model the volumetric density and directionally-emitted radiance of a scene.
We learn object-centric neural scattering functions (OSFs), a representation that models per-object light transport implicitly using a lighting- and view-dependent neural network.
arXiv Detail & Related papers (2020-12-15T18:55:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.