SplitNeRF: Split Sum Approximation Neural Field for Joint Geometry,
Illumination, and Material Estimation
- URL: http://arxiv.org/abs/2311.16671v1
- Date: Tue, 28 Nov 2023 10:36:36 GMT
- Title: SplitNeRF: Split Sum Approximation Neural Field for Joint Geometry,
Illumination, and Material Estimation
- Authors: Jesus Zarzar, Bernard Ghanem
- Abstract summary: We present a novel approach for digitizing real-world objects by estimating their geometry, material properties, and lighting.
Our method incorporates into Radiance Neural Field (NeRF) pipelines the split sum approximation used with image-based lighting for real-time physical-based rendering.
Our method is capable of attaining state-of-the-art relighting quality after only $sim1$ hour of training in a single NVIDIA A100 GPU.
- Score: 65.99344783327054
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a novel approach for digitizing real-world objects by estimating
their geometry, material properties, and environmental lighting from a set of
posed images with fixed lighting. Our method incorporates into Neural Radiance
Field (NeRF) pipelines the split sum approximation used with image-based
lighting for real-time physical-based rendering. We propose modeling the
scene's lighting with a single scene-specific MLP representing pre-integrated
image-based lighting at arbitrary resolutions. We achieve accurate modeling of
pre-integrated lighting by exploiting a novel regularizer based on efficient
Monte Carlo sampling. Additionally, we propose a new method of supervising
self-occlusion predictions by exploiting a similar regularizer based on Monte
Carlo sampling. Experimental results demonstrate the efficiency and
effectiveness of our approach in estimating scene geometry, material
properties, and lighting. Our method is capable of attaining state-of-the-art
relighting quality after only ${\sim}1$ hour of training in a single NVIDIA
A100 GPU.
Related papers
- MIRReS: Multi-bounce Inverse Rendering using Reservoir Sampling [17.435649250309904]
We present MIRReS, a novel two-stage inverse rendering framework.
Our method extracts an explicit geometry (triangular mesh) in stage one, and introduces a more realistic physically-based inverse rendering model.
Our method effectively estimates indirect illumination, including self-shadowing and internal reflections.
arXiv Detail & Related papers (2024-06-24T07:00:57Z) - NePF: Neural Photon Field for Single-Stage Inverse Rendering [6.977356702921476]
We present a novel single-stage framework, Neural Photon Field (NePF), to address the ill-posed inverse rendering from multi-view images.
NePF achieves this unification by fully utilizing the physical implication behind the weight function of neural implicit surfaces.
We evaluate our method on both real and synthetic datasets.
arXiv Detail & Related papers (2023-11-20T06:15:46Z) - Spatiotemporally Consistent HDR Indoor Lighting Estimation [66.26786775252592]
We propose a physically-motivated deep learning framework to solve the indoor lighting estimation problem.
Given a single LDR image with a depth map, our method predicts spatially consistent lighting at any given image position.
Our framework achieves photorealistic lighting prediction with higher quality compared to state-of-the-art single-image or video-based methods.
arXiv Detail & Related papers (2023-05-07T20:36:29Z) - TensoIR: Tensorial Inverse Rendering [51.57268311847087]
TensoIR is a novel inverse rendering approach based on tensor factorization and neural fields.
TensoRF is a state-of-the-art approach for radiance field modeling.
arXiv Detail & Related papers (2023-04-24T21:39:13Z) - NeFII: Inverse Rendering for Reflectance Decomposition with Near-Field
Indirect Illumination [48.42173911185454]
Inverse rendering methods aim to estimate geometry, materials and illumination from multi-view RGB images.
We propose an end-to-end inverse rendering pipeline that decomposes materials and illumination from multi-view images.
arXiv Detail & Related papers (2023-03-29T12:05:19Z) - Physics-based Indirect Illumination for Inverse Rendering [70.27534648770057]
We present a physics-based inverse rendering method that learns the illumination, geometry, and materials of a scene from posed multi-view RGB images.
As a side product, our physics-based inverse rendering model also facilitates flexible and realistic material editing as well as relighting.
arXiv Detail & Related papers (2022-12-09T07:33:49Z) - NeILF: Neural Incident Light Field for Physically-based Material
Estimation [31.230609753253713]
We present a differentiable rendering framework for material and lighting estimation from multi-view images and a reconstructed geometry.
In the framework, we represent scene lightings as the Neural Incident Light Field (NeILF) and material properties as the surface BRDF modelled by multi-layer perceptrons.
arXiv Detail & Related papers (2022-03-14T15:23:04Z) - DIB-R++: Learning to Predict Lighting and Material with a Hybrid
Differentiable Renderer [78.91753256634453]
We consider the challenging problem of predicting intrinsic object properties from a single image by exploiting differentiables.
In this work, we propose DIBR++, a hybrid differentiable which supports these effects by combining specularization and ray-tracing.
Compared to more advanced physics-based differentiables, DIBR++ is highly performant due to its compact and expressive model.
arXiv Detail & Related papers (2021-10-30T01:59:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.