論文の概要: Reachable Polyhedral Marching (RPM): An Exact Analysis Tool for
Deep-Learned Control Systems
- arxiv url: http://arxiv.org/abs/2210.08339v1
- Date: Sat, 15 Oct 2022 17:15:53 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-18 17:41:06.988492
- Title: Reachable Polyhedral Marching (RPM): An Exact Analysis Tool for
Deep-Learned Control Systems
- Title(参考訳): Reachable Polyhedral Marching (RPM):Deep-Learned Control Systemのための厳密な解析ツール
- Authors: Joseph A. Vincent and Mac Schwager
- Abstract要約: 本稿では,直列線形ユニット(ReLU)をアクティベートしたディープニューラルネットワークの,前方および後方到達可能な正確な集合を計算するためのツールを提案する。
このツールを用いてアルゴリズムを開発し、フィードバックループ内のニューラルネットワークを持つ制御系に対する不変集合とアトラクション領域(ROA)を計算する。
- 参考スコア(独自算出の注目度): 20.595032143044506
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a tool for computing exact forward and backward reachable sets of
deep neural networks with rectified linear unit (ReLU) activation. We then
develop algorithms using this tool to compute invariant sets and regions of
attraction (ROAs) for control systems with neural networks in the feedback
loop. Our algorithm is unique in that it builds the reachable sets by
incrementally enumerating polyhedral regions in the input space, rather than
iterating layer-by-layer through the network as in other methods. When
performing safety verification, if an unsafe region is found, our algorithm can
return this result without completing the full reachability computation, thus
giving an anytime property that accelerates safety verification. Furthermore,
we introduce a method to accelerate the computation of ROAs in the case that
deep learned components are homeomorphisms, which we find is surprisingly
common in practice. We demonstrate our tool in several test cases. We compute a
ROA for a learned van der Pol oscillator model. We find a control invariant set
for a learned torque-controlled pendulum model. We also verify specific safety
properties for multiple deep networks related to the ACAS Xu aircraft collision
advisory system. Finally, we apply our algorithm to find ROAs for an
image-based aircraft runway taxi problem. Algorithm source code:
https://github.com/StanfordMSL/Neural-Network-Reach .
- Abstract(参考訳): 本稿では,直交線形単位(relu)アクティベーションを持つ深層ニューラルネットワークの正確な前方および後方到達可能な集合を計算するためのツールを提案する。
このツールを用いてアルゴリズムを開発し、フィードバックループ内のニューラルネットワークを持つ制御系に対する不変集合とアトラクション領域(ROA)を計算する。
本アルゴリズムは,入力空間内の多面体領域を段階的に列挙することで到達可能な集合を構築することができる。
安全性検証を行う場合、もし安全でない領域が見つかった場合、我々のアルゴリズムは完全な到達性計算を完了せずにこの結果を返すことができる。
さらに,深層学習成分が準同型である場合に,ROAsの計算を高速化する手法を提案する。
私たちはいくつかのテストケースでツールを示します。
学習したファンデルポル振動子モデルに対するROAを計算する。
学習したトルク制御振子モデルに対する制御不変集合を求める。
また,ACAS Xu航空機衝突諮問システムに関連する複数の深層ネットワークの安全性を検証した。
最後に,画像に基づく滑走路タクシー問題に対するROAを求めるアルゴリズムを適用した。
アルゴリズムのソースコード:https://github.com/StanfordMSL/Neural-Network-Reach
関連論文リスト
- Partial End-to-end Reinforcement Learning for Robustness Against Modelling Error in Autonomous Racing [0.0]
本稿では、自動運転車における強化学習(RL)ソリューションの性能向上の問題に対処する。
計画タスクと制御タスクを分離する部分的なエンドツーエンドアルゴリズムを提案する。
従来の制御器のロバスト性を活用することにより,本アルゴリズムは標準のエンドツーエンドアルゴリズムよりもモデルミスマッチに対するロバスト性を向上する。
論文 参考訳(メタデータ) (2023-12-11T14:27:10Z) - Attribution Patching Outperforms Automated Circuit Discovery [3.8695554579762814]
帰属パッチに基づく単純な手法が,既存の手法よりも優れていることを示す。
演算サブグラフにおける各エッジの重要性を推定するために、線形近似をアクティベーションパッチに適用する。
論文 参考訳(メタデータ) (2023-10-16T12:34:43Z) - Interval Reachability of Nonlinear Dynamical Systems with Neural Network
Controllers [5.543220407902113]
本稿では、ニューラルネットワークコントローラを用いた非線形連続時間力学系の厳密な検証のための区間解析に基づく計算効率の良いフレームワークを提案する。
混合単調理論に着想を得て,ニューラルネットワークの包摂関数と開ループシステムの分解関数を用いて,閉ループ力学をより大きなシステムに組み込む。
埋め込みシステムの単一軌跡を用いて、到達可能な集合の超矩形超近似を効率的に計算できることが示される。
論文 参考訳(メタデータ) (2023-01-19T06:46:36Z) - Automated Reachability Analysis of Neural Network-Controlled Systems via
Adaptive Polytopes [2.66512000865131]
適応テンプレートポリトープを用いたニューラルネットワーク動的システムの到達可能な集合を過度に近似する新しい手法を開発した。
本稿では,ニューラルネットワークコントローラによって駆動される線形システムの到達可能性解析における提案手法の有用性について述べる。
論文 参考訳(メタデータ) (2022-12-14T23:49:53Z) - Stabilizing Q-learning with Linear Architectures for Provably Efficient
Learning [53.17258888552998]
本研究では,線形関数近似を用いた基本的な$Q$-learningプロトコルの探索変種を提案する。
このアルゴリズムの性能は,新しい近似誤差というより寛容な概念の下で,非常に優雅に低下することを示す。
論文 参考訳(メタデータ) (2022-06-01T23:26:51Z) - Physics-informed Neural Networks-based Model Predictive Control for
Multi-link Manipulators [0.0]
物理インフォームド機械学習手法を用いて,多体ダイナミクスに対する非線形モデル予測制御(NMPC)について論じる。
本稿では,ネットワーク入力として制御動作と初期条件を付加することでPINNの強化を提案する。
PINNベースのMPCを用いて,複雑な機械システムにおける追跡問題の解法を提案する。
論文 参考訳(メタデータ) (2021-09-22T15:31:24Z) - Finite-time System Identification and Adaptive Control in Autoregressive
Exogenous Systems [79.67879934935661]
未知のARXシステムのシステム識別と適応制御の問題について検討する。
我々は,オープンループとクローズループの両方のデータ収集の下で,ARXシステムに対する有限時間学習保証を提供する。
論文 参考訳(メタデータ) (2021-08-26T18:00:00Z) - Turning Channel Noise into an Accelerator for Over-the-Air Principal
Component Analysis [65.31074639627226]
主成分分析(PCA)は、データセットの線形構造を抽出するための技術です。
勾配降下アルゴリズムに基づくマルチアクセスチャネル上にPCAを配置する手法を提案する。
オーバー・ザ・エア・アグリゲーションはマルチ・アクセスの遅延を減らすために採用され、オーバー・ザ・エア・PCAという名称を与える。
論文 参考訳(メタデータ) (2021-04-20T16:28:33Z) - Composable Learning with Sparse Kernel Representations [110.19179439773578]
再生カーネルヒルベルト空間におけるスパース非パラメトリック制御系を学習するための強化学習アルゴリズムを提案する。
正規化アドバンテージ関数を通じてステートアクション関数の構造を付与することにより、このアプローチのサンプル複雑さを改善します。
2次元環境下を走行しながらレーザースキャナーを搭載したロボットの複数シミュレーションにおける障害物回避政策の学習に関するアルゴリズムの性能を実証する。
論文 参考訳(メタデータ) (2021-03-26T13:58:23Z) - Phase Retrieval using Expectation Consistent Signal Recovery Algorithm
based on Hypernetwork [73.94896986868146]
位相検索は現代の計算イメージングシステムにおいて重要な要素である。
近年のディープラーニングの進歩は、堅牢で高速なPRの新たな可能性を開いた。
我々は、既存の制限を克服するために、深層展開のための新しいフレームワークを開発する。
論文 参考訳(メタデータ) (2021-01-12T08:36:23Z) - Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for
Online Collision Avoidance [95.86944752753564]
本稿では,モデル予測制御(MPC)の定式化を拡張したオンライン経路計画アーキテクチャを提案する。
我々のアルゴリズムは、状態推定の共分散を推論するリカレントニューラルネットワーク(RNN)とオブジェクト検出パイプラインを組み合わせる。
本手法のロバスト性は, 複雑な四足歩行ロボットの力学で検証され, ほとんどのロボットプラットフォームに適用可能である。
論文 参考訳(メタデータ) (2020-07-28T07:34:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。