論文の概要: Pathfinding Neural Cellular Automata
- arxiv url: http://arxiv.org/abs/2301.06820v1
- Date: Tue, 17 Jan 2023 11:45:51 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-18 14:19:04.977771
- Title: Pathfinding Neural Cellular Automata
- Title(参考訳): パスファインディング神経細胞オートマトン
- Authors: Sam Earle, Ozlem Yildiz, Julian Togelius, Chinmay Hegde
- Abstract要約: Pathfindingは、ロボットパス計画、トランスポートルーティング、ゲームプレイなど、幅広い複雑なAIタスクの重要なサブコンポーネントである。
我々は, Breadth-First Search (BFS) のモデル,すなわち最短経路探索のハンドコードと学習を行う。
本稿では、Depth-First Search(DFS)のニューラル実装を提案し、グラフの直径を計算するためのNAAを生成するために、ニューラルネットワークBFSと組み合わせる方法について概説する。
我々は,これらの手書きNCAに触発されたアーキテクチャ変更を実験し,グリッド迷路の直径問題を解くためにゼロからネットワークをトレーニングし,高い能力の一般化を示した。
- 参考スコア(独自算出の注目度): 23.831530224401575
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Pathfinding makes up an important sub-component of a broad range of complex
tasks in AI, such as robot path planning, transport routing, and game playing.
While classical algorithms can efficiently compute shortest paths, neural
networks could be better suited to adapting these sub-routines to more complex
and intractable tasks. As a step toward developing such networks, we hand-code
and learn models for Breadth-First Search (BFS), i.e. shortest path finding,
using the unified architectural framework of Neural Cellular Automata, which
are iterative neural networks with equal-size inputs and outputs. Similarly, we
present a neural implementation of Depth-First Search (DFS), and outline how it
can be combined with neural BFS to produce an NCA for computing diameter of a
graph. We experiment with architectural modifications inspired by these
hand-coded NCAs, training networks from scratch to solve the diameter problem
on grid mazes while exhibiting strong generalization ability. Finally, we
introduce a scheme in which data points are mutated adversarially during
training. We find that adversarially evolving mazes leads to increased
generalization on out-of-distribution examples, while at the same time
generating data-sets with significantly more complex solutions for reasoning
tasks.
- Abstract(参考訳): pathfindingは、ロボットの経路計画、輸送経路、ゲームプレイなど、aiにおける幅広い複雑なタスクの重要なサブコンポーネントを構成する。
古典的なアルゴリズムは最短経路を効率的に計算できるが、ニューラルネットワークはこれらのサブルーチンをより複雑で難解なタスクに適応するのに適している。
このようなネットワークを構築するためのステップとして,同一サイズの入力と出力を持つ反復型ニューラルネットワークであるneural cellular automataの統一アーキテクチャフレームワークを用いて,幅優先探索(bfs)のためのモデルを手入力して学習する。
同様に、Depth-First Search(DFS)のニューラル実装を提案し、グラフの直径を計算するためのNAAを生成するために、ニューラルネットワークBFSと組み合わせる方法について概説する。
我々は,これらのハンドコードncasにインスパイアされたアーキテクチャ変更を実験し,グリッド迷路の直径問題を解決するためにネットワークをスクラッチからトレーニングし,強力な一般化能力を示した。
最後に,トレーニング中にデータポイントを反対方向に変更する方式を提案する。
逆向きに進化する迷路は、分布外例の一般化を増大させると同時に、推論タスクのより複雑な解を持つデータセットを生成する。
関連論文リスト
- Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - Deep Architecture Connectivity Matters for Its Convergence: A
Fine-Grained Analysis [94.64007376939735]
我々は、勾配降下訓練におけるディープニューラルネットワーク(DNN)の収束に対する接続パターンの影響を理論的に特徴づける。
接続パターンの単純なフィルタリングによって、評価対象のモデルの数を削減できることが示される。
論文 参考訳(メタデータ) (2022-05-11T17:43:54Z) - Combining Optimal Path Search With Task-Dependent Learning in a Neural
Network [4.1712273169097305]
コスト値をシナプス重みに変換することにより,経路探索問題のニューラルネットワーク表現を定義することができることを示す。
ネットワーク学習機構は, ネットワーク内の重みを手作業に応じて強化し, ネットワークの重み付けに適応できることを示す。
論文 参考訳(メタデータ) (2022-01-26T18:29:00Z) - Neural networks with linear threshold activations: structure and
algorithms [1.795561427808824]
クラス内で表現可能な関数を表現するのに、2つの隠れたレイヤが必要であることを示す。
また、クラス内の任意の関数を表すのに必要なニューラルネットワークのサイズについて、正確な境界を与える。
我々は,線形しきい値ネットワークと呼ばれるニューラルネットワークの新たなクラスを提案する。
論文 参考訳(メタデータ) (2021-11-15T22:33:52Z) - Improving the sample-efficiency of neural architecture search with
reinforcement learning [0.0]
この作業では、Automated Machine Learning(AutoML)の領域にコントリビュートしたいと思っています。
我々の焦点は、最も有望な研究方向の一つ、強化学習である。
児童ネットワークの検証精度は、コントローラを訓練するための報奨信号として機能する。
我々は、これをより現代的で複雑なアルゴリズムであるPPOに修正することを提案する。
論文 参考訳(メタデータ) (2021-10-13T14:30:09Z) - Firefly Neural Architecture Descent: a General Approach for Growing
Neural Networks [50.684661759340145]
firefly neural architecture descentは、ニューラルネットワークを漸進的かつ動的に成長させるための一般的なフレームワークである。
ホタルの降下は、より広く、より深くネットワークを柔軟に成長させ、正確だがリソース効率のよいニューラルアーキテクチャを学習するために応用できることを示す。
特に、サイズは小さいが、最先端の手法で学習したネットワークよりも平均精度が高いネットワークを学習する。
論文 参考訳(メタデータ) (2021-02-17T04:47:18Z) - Optimizing Memory Placement using Evolutionary Graph Reinforcement
Learning [56.83172249278467]
大規模検索空間を対象とした進化グラフ強化学習(EGRL)を提案する。
我々は、推論のために、Intel NNP-Iチップ上で、我々のアプローチを直接訓練し、検証する。
また,NNP-Iコンパイラと比較して28~78%の高速化を実現している。
論文 参考訳(メタデータ) (2020-07-14T18:50:12Z) - Locality Guided Neural Networks for Explainable Artificial Intelligence [12.435539489388708]
LGNN(Locality Guided Neural Network)と呼ばれる,バック伝搬のための新しいアルゴリズムを提案する。
LGNNはディープネットワークの各層内の隣接ニューロン間の局所性を保っている。
実験では,CIFAR100 上の画像分類のための様々な VGG と Wide ResNet (WRN) ネットワークを訓練した。
論文 参考訳(メタデータ) (2020-07-12T23:45:51Z) - AutoML-Zero: Evolving Machine Learning Algorithms From Scratch [76.83052807776276]
基本数学的操作をビルディングブロックとして使うだけで,完全な機械学習アルゴリズムを自動的に発見できることが示される。
汎用的な検索空間を通じて人間のバイアスを大幅に低減する新しいフレームワークを導入することでこれを実証する。
機械学習アルゴリズムをゼロから発見する上で、これらの予備的な成功は、この分野における有望な新しい方向性を示していると信じている。
論文 参考訳(メタデータ) (2020-03-06T19:00:04Z) - Large-Scale Gradient-Free Deep Learning with Recursive Local
Representation Alignment [84.57874289554839]
大規模データセット上でディープニューラルネットワークをトレーニングするには、重要なハードウェアリソースが必要である。
これらのネットワークをトレーニングするためのワークホースであるバックプロパゲーションは、本質的に並列化が難しいシーケンシャルなプロセスである。
本稿では、深層ネットワークのトレーニングに使用できるバックプロップに代わる、神経生物学的に有望な代替手段を提案する。
論文 参考訳(メタデータ) (2020-02-10T16:20:02Z) - Lossless Compression of Deep Neural Networks [17.753357839478575]
ディープニューラルネットワークは、画像や言語認識など、多くの予測モデリングタスクで成功している。
モバイルデバイスのような限られた計算資源の下でこれらのネットワークをデプロイすることは困難である。
生成した出力を変更せずに、ニューラルネットワークの単位と層を除去するアルゴリズムを導入する。
論文 参考訳(メタデータ) (2020-01-01T15:04:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。