論文の概要: Evaluating Guiding Spaces for Motion Planning
- arxiv url: http://arxiv.org/abs/2210.08640v1
- Date: Sun, 16 Oct 2022 21:17:51 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-18 20:38:15.115945
- Title: Evaluating Guiding Spaces for Motion Planning
- Title(参考訳): 運動計画のための案内空間の評価
- Authors: Amnon Attali, Stav Ashur, Isaac Burton Love, Courtney McBeth, James
Motes, Diane Uwacu, Marco Morales, Nancy M. Amato
- Abstract要約: 我々は、同じ枠組みの下で、見かけ上の異なる多くの先行研究をカプセル化するエンフモーション計画誘導空間を定義する。
また,得られたバイアスサンプリングの品質に焦点をあてた案内計画を評価するための情報理論手法を提案する。
- 参考スコア(独自算出の注目度): 2.384084215091134
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Randomized sampling based algorithms are widely used in robot motion planning
due to the problem's intractability, and are experimentally effective on a wide
range of problem instances. Most variants do not sample uniformly at random,
and instead bias their sampling using various heuristics for determining which
samples will provide more information, or are more likely to participate in the
final solution. In this work, we define the \emph{motion planning guiding
space}, which encapsulates many seemingly distinct prior works under the same
framework. In addition, we suggest an information theoretic method to evaluate
guided planning which places the focus on the quality of the resulting biased
sampling. Finally, we analyze several motion planning algorithms in order to
demonstrate the applicability of our definition and its evaluation.
- Abstract(参考訳): ランダム化サンプリングに基づくアルゴリズムは、ロボットの動作計画において難易度のために広く使われており、幅広い問題事例において実験的に有効である。
ほとんどの変種はランダムにサンプルを採取せず、どのサンプルがより多くの情報を提供するか、あるいは最終的なソリューションに参加する可能性が高いかを決定するために様々なヒューリスティックを用いてサンプリングをバイアスする。
本研究では,同一の枠組みの下で,一見異なる先行作業の多くをカプセル化する,<emph{motion planning guiding space}>を定義した。
また,得られたバイアスドサンプリングの品質に焦点をあてたガイドドプランニングを評価するための情報理論的な手法を提案する。
最後に,複数の動作計画アルゴリズムを分析し,その定義の適用性とその評価について検証する。
関連論文リスト
- Align Your Steps: Optimizing Sampling Schedules in Diffusion Models [63.927438959502226]
拡散モデル(DM)は、視覚領域以降における最先端の生成モデリングアプローチとして確立されている。
DMの重大な欠点は、サンプリング速度の遅いことであり、大規模なニューラルネットワークによる多くのシーケンシャルな関数評価に依存している。
本稿では,DMのサンプリングスケジュールを高品質な出力に最適化する汎用的,原理的な手法を提案する。
論文 参考訳(メタデータ) (2024-04-22T18:18:41Z) - A Framework for Guided Motion Planning [1.179253400575852]
我々は、ガイド空間の概念を定義することにより、ガイド付き探索の概念を定式化する。
この新しい言語は、同じフレームワークの下で、明らかに異なる先行メソッドをカプセル化している。
本稿では,既知のアルゴリズムでテストした場合の直感と実験的に一致したガイダンスを評価するための情報理論手法を提案する。
論文 参考訳(メタデータ) (2024-04-04T00:58:19Z) - Globally-Optimal Greedy Experiment Selection for Active Sequential
Estimation [1.1530723302736279]
逐次的に収集したデータの実験を適応的に選択するアクティブシーケンシャル推定の問題について検討する。
目標は、より正確なモデル推定のための実験選択ルールを設計することである。
そこで本稿では,グリーディ実験の選択手法のクラスを提案し,最大可能性の統計的解析を行う。
論文 参考訳(メタデータ) (2024-02-13T17:09:29Z) - Experiment Planning with Function Approximation [49.50254688629728]
本研究では,文脈的帯域幅問題における関数近似を用いた実験計画の問題点について検討する。
本稿では,関数近似に適合する2つの実験計画戦略を提案する。
そこで, 均一サンプリング器は, 動作数が少ない設定において, 競合最適性を達成できることを示す。
論文 参考訳(メタデータ) (2024-01-10T14:40:23Z) - Best-Effort Adaptation [62.00856290846247]
本稿では, 試料再重み付け法に関する新しい理論的解析を行い, 試料再重み付け法を一様に保持する境界について述べる。
これらの境界が、我々が詳細に議論する学習アルゴリズムの設計を導く方法を示す。
本稿では,本アルゴリズムの有効性を実証する一連の実験結果について報告する。
論文 参考訳(メタデータ) (2023-05-10T00:09:07Z) - Bi-objective Ranking and Selection Using Stochastic Kriging [0.0]
両目的のランク付けと選択の問題について検討し,その2つの目的が不確実性をもって観測された。
そこで本研究では,競合する解に対して逐次サンプルを割り当てるバイーシアン双対象ランクと選別法を提案する。
実験結果から,提案手法は標準的なアロケーション手法よりも優れており,また,よく知られた最先端のアルゴリズムも優れていることがわかった。
論文 参考訳(メタデータ) (2022-09-05T23:51:07Z) - Active Exploration via Experiment Design in Markov Chains [86.41407938210193]
科学と工学における重要な課題は、未知の量の興味について学ぶために実験を設計することである。
本稿では,最適値に収束したポリシを効率的に選択するアルゴリズムを提案する。
理論分析に加えて,生態モニタリングと薬理学の応用に関する枠組みを概説する。
論文 参考訳(メタデータ) (2022-06-29T00:04:40Z) - Local policy search with Bayesian optimization [73.0364959221845]
強化学習は、環境との相互作用によって最適な政策を見つけることを目的としている。
局所探索のための政策勾配は、しばしばランダムな摂動から得られる。
目的関数の確率モデルとその勾配を用いたアルゴリズムを開発する。
論文 参考訳(メタデータ) (2021-06-22T16:07:02Z) - Learning to Plan Optimally with Flow-based Motion Planner [29.124322674133]
従来の経験から学習した条件付き正規化フローに基づく分布を導入し,これらの手法のサンプリングを改善する。
我々の分布は現在のイシューインスタンスで条件付けでき、将来性のある領域内の構成をサンプリングするための情報的事前情報を提供することができる。
フローベースの正規化ディストリビューションを使用することで、より高速にソリューションを見つけることができ、より少ないサンプルと全体的な実行時のパフォーマンスが向上します。
論文 参考訳(メタデータ) (2020-10-21T21:46:08Z) - A Framework for Sample Efficient Interval Estimation with Control
Variates [94.32811054797148]
確率変数の平均に対して信頼区間を推定する問題を考察する。
ある条件下では、既存の推定アルゴリズムと比較して効率が向上している。
論文 参考訳(メタデータ) (2020-06-18T05:42:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。