論文の概要: RARR: Researching and Revising What Language Models Say, Using Language
Models
- arxiv url: http://arxiv.org/abs/2210.08726v3
- Date: Wed, 31 May 2023 17:55:02 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-01 20:43:48.889615
- Title: RARR: Researching and Revising What Language Models Say, Using Language
Models
- Title(参考訳): RARR:言語モデルを用いた言語モデルの意味の調査と改訂
- Authors: Luyu Gao, Zhuyun Dai, Panupong Pasupat, Anthony Chen, Arun Tejasvi
Chaganty, Yicheng Fan, Vincent Y. Zhao, Ni Lao, Hongrae Lee, Da-Cheng Juan,
Kelvin Guu
- Abstract要約: RARR(Retrofit Attribution using Research and Revision)は,テキスト生成モデルの出力に対する属性を自動的に検出するシステムである。
RARRは、以前検討した編集モデルよりも、元の入力をはるかに高い程度に保存しながら、属性を著しく改善することがわかった。
- 参考スコア(独自算出の注目度): 31.057495176599502
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Language models (LMs) now excel at many tasks such as few-shot learning,
question answering, reasoning, and dialog. However, they sometimes generate
unsupported or misleading content. A user cannot easily determine whether their
outputs are trustworthy or not, because most LMs do not have any built-in
mechanism for attribution to external evidence. To enable attribution while
still preserving all the powerful advantages of recent generation models, we
propose RARR (Retrofit Attribution using Research and Revision), a system that
1) automatically finds attribution for the output of any text generation model
and 2) post-edits the output to fix unsupported content while preserving the
original output as much as possible. When applied to the output of several
state-of-the-art LMs on a diverse set of generation tasks, we find that RARR
significantly improves attribution while otherwise preserving the original
input to a much greater degree than previously explored edit models.
Furthermore, the implementation of RARR requires only a handful of training
examples, a large language model, and standard web search.
- Abstract(参考訳): 言語モデル(LM)は、少人数の学習、質問応答、推論、ダイアログなど、多くのタスクに優れています。
しかし、時にはサポートされないコンテンツや誤解を招くこともある。
ほとんどのLMには外部の証拠に寄与する機構が組み込まれていないため、ユーザはアウトプットが信頼できるかどうかを容易に判断できない。
近年の次世代モデルの強大な優位性を保ちつつ貢献を可能にするため, RARR(Retrofit Attribution using Research and Revision)を提案する。
1)任意のテキスト生成モデルの出力に対する属性を自動的に発見し、
2) 元の出力を可能な限り保存しながら、出力を修正サポートコンテンツにポスト編集する。
様々な生成タスクにおける最先端のLMの出力に適用すると、RARRは元の入力を以前検討した編集モデルよりもはるかに大きく保ちながら、属性を著しく改善することがわかった。
さらに、RARRの実装には、少数のトレーニング例、大規模な言語モデル、標準的なWeb検索が必要である。
関連論文リスト
- Language Models can Self-Lengthen to Generate Long Texts [74.96074422345806]
本稿では,Self-Lengthenというイノベーティブな反復学習フレームワークを紹介する。
補助的なデータやプロプライエタリなモデルを必要としない、大規模言語モデルの本質的な知識とスキルのみを活用する。
ベンチマークと人的評価の実験により、Self-Lengthenは長文生成において既存の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2024-10-31T13:47:10Z) - Less is More: Making Smaller Language Models Competent Subgraph Retrievers for Multi-hop KGQA [51.3033125256716]
本研究では,小言語モデルで処理される条件生成タスクとして,サブグラフ検索タスクをモデル化する。
2億2千万のパラメータからなる基本生成部分グラフ検索モデルでは,最先端モデルと比較して競合検索性能が向上した。
LLMリーダを接続した最大の3Bモデルは、WebQSPとCWQベンチマークの両方で、SOTAのエンドツーエンドパフォーマンスを新たに設定します。
論文 参考訳(メタデータ) (2024-10-08T15:22:36Z) - DALD: Improving Logits-based Detector without Logits from Black-box LLMs [56.234109491884126]
大規模言語モデル(LLM)はテキスト生成に革命をもたらし、人間の文章を忠実に模倣する出力を生成する。
我々は、ブラックボックステキスト検出における最先端性能を再定義する革新的なフレームワークであるDLD(Dis Distribution-Aligned LLMs Detection)を提案する。
DALDは、サロゲートモデルの分布を未知の目標LLMの分布と整合させ、高速モデルの反復に対する検出能力とレジリエンスを向上するように設計されている。
論文 参考訳(メタデータ) (2024-06-07T19:38:05Z) - RAR-b: Reasoning as Retrieval Benchmark [7.275757292756447]
我々は、推論タスクを検索タスクに変換し、レトリバーモデルに格納された推論能力を評価する。
最近のデコーダベースの埋め込みモデルは、ギャップを狭めることに非常に有望である。
Reasoning as Retrieval Benchmark (RAR-b) は、検索モデルに格納された推論能力を評価するためのタスクと設定の総合的なスイートである。
論文 参考訳(メタデータ) (2024-04-09T14:34:48Z) - Generative Representational Instruction Tuning [89.76840377003178]
GritLM 7B がMassive Text Embedding Benchmark (MTEB) に新たな技術状況を設定する
GritLM 8x7Bは、私たちが試したすべてのオープンな生成言語モデルよりも優れています。
論文 参考訳(メタデータ) (2024-02-15T12:12:19Z) - RegaVAE: A Retrieval-Augmented Gaussian Mixture Variational Auto-Encoder
for Language Modeling [79.56442336234221]
可変オートエンコーダ(VAE)に基づく検索拡張言語モデルであるRegaVAEを紹介する。
テキストコーパスを潜在空間にエンコードし、ソースとターゲットの両方のテキストから現在と将来の情報をキャプチャする。
各種データセットに対する実験結果から,テキスト生成品質と幻覚除去の大幅な改善が示された。
論文 参考訳(メタデータ) (2023-10-16T16:42:01Z) - Characterizing Attribution and Fluency Tradeoffs for Retrieval-Augmented
Large Language Models [6.425088990363101]
本研究では, 大規模言語モデルにおけるフラレンシと帰属の関係について検討した。
より大きなモデルは、流布と帰属の両方において、より優れた結果をもたらす傾向があることを示す。
そこで本研究では,より小さなモデルで大きなモデルとのギャップを埋めることと,トップk検索のメリットを両立できるレシピを提案する。
論文 参考訳(メタデータ) (2023-02-11T02:43:34Z) - In-Context Retrieval-Augmented Language Models [28.23702459322163]
In-Context RALMは市販の汎用検索機を利用して、モデルサイズや多様なコーパスに対して驚くほど大きなLMゲインを提供する。
In-Context RALM は LM の接地頻度を増大させる可能性があると結論付けている。
論文 参考訳(メタデータ) (2023-01-31T20:26:16Z) - Language Model Pre-Training with Sparse Latent Typing [66.75786739499604]
そこで本研究では,多種多様な潜在型を持つ文レベルのキーワードを疎に抽出することのできる,事前学習対象Sparse Latent Typingを提案する。
実験結果から,本モデルは外部知識を使わずに,自己教師型で解釈可能な潜在型カテゴリを学習できることが示唆された。
論文 参考訳(メタデータ) (2022-10-23T00:37:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。