論文の概要: Effective and Efficient Query-aware Snippet Extraction for Web Search
- arxiv url: http://arxiv.org/abs/2210.08809v1
- Date: Mon, 17 Oct 2022 07:46:17 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-18 18:53:42.191835
- Title: Effective and Efficient Query-aware Snippet Extraction for Web Search
- Title(参考訳): web 検索のための効率的かつ効率的なクエリアウェアスニペット抽出
- Authors: Jingwei Yi, Fangzhao Wu, Chuhan Wu, Xiaolong Huang, Binxing Jiao,
Guangzhong Sun, Xing Xie
- Abstract要約: 本稿では,DeepQSE という名前の効率的なクエリ対応 Web ページスニペット抽出手法を提案する。
DeepQSEはまず各文に対するクエリ対応の文表現を学習し、クエリと文間の微妙な関連性をキャプチャする。
本稿では,DeepQSEの効率的なバージョンであるEfficient-DeepQSEを提案する。
- 参考スコア(独自算出の注目度): 61.60405035952961
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Query-aware webpage snippet extraction is widely used in search engines to
help users better understand the content of the returned webpages before
clicking. Although important, it is very rarely studied. In this paper, we
propose an effective query-aware webpage snippet extraction method named
DeepQSE, aiming to select a few sentences which can best summarize the webpage
content in the context of input query. DeepQSE first learns query-aware
sentence representations for each sentence to capture the fine-grained
relevance between query and sentence, and then learns document-aware
query-sentence relevance representations for snippet extraction. Since the
query and each sentence are jointly modeled in DeepQSE, its online inference
may be slow. Thus, we further propose an efficient version of DeepQSE, named
Efficient-DeepQSE, which can significantly improve the inference speed of
DeepQSE without affecting its performance. The core idea of Efficient-DeepQSE
is to decompose the query-aware snippet extraction task into two stages, i.e.,
a coarse-grained candidate sentence selection stage where sentence
representations can be cached, and a fine-grained relevance modeling stage.
Experiments on two real-world datasets validate the effectiveness and
efficiency of our methods.
- Abstract(参考訳): クエリ対応のWebページスニペット抽出は、ユーザがクリックする前に返されるWebページの内容をよりよく理解するために、検索エンジンで広く使用されている。
重要ではあるが、ほとんど研究されていない。
本稿では,入力クエリの文脈において,webページコンテンツを最も要約可能な文を選択することを目的とした,deepqseという,クエリアウェアなwebページスニペット抽出手法を提案する。
deepqseは、まず各文の問合せ認識文表現を学習し、問合せと文間のきめ細かな関連性を捉え、次にスニペット抽出のための文書認識クエリ・センス関係表現を学習する。
クエリと各文はDeepQSEで共同でモデル化されているため、オンライン推論は遅くなる可能性がある。
そこで,我々はさらに,deepqseの性能に影響を与えることなく,deepqseの推論速度を著しく向上させることのできる,効率的なdeepqseバージョンである efficient-deepqseを提案する。
Efficient-DeepQSEの基本的な考え方は、クエリ対応スニペット抽出タスクを、文表現をキャッシュ可能な粗粒度候補文選択ステージと、詳細な関連性モデリングステージの2段階に分解することである。
実世界の2つのデータセットによる実験は,本手法の有効性と有効性を検証する。
関連論文リスト
- Aligning Query Representation with Rewritten Query and Relevance Judgments in Conversational Search [32.35446999027349]
我々は、より優れたクエリ表現モデルをトレーニングするために、リライトされたクエリと会話検索データの関連判断の両方を活用する。
提案したモデル --Query Representation Alignment Conversational Retriever(QRACDR)は、8つのデータセットでテストされる。
論文 参考訳(メタデータ) (2024-07-29T17:14:36Z) - Progressive Query Expansion for Retrieval Over Cost-constrained Data Sources [6.109188517569139]
ProQEはプログレッシブなクエリ拡張アルゴリズムで、より多くのドキュメントを取得すると、クエリを反復的に拡張する。
その結果, ProQEは最先端のベースラインを37%上回り, 費用対効果が最も高いことがわかった。
論文 参考訳(メタデータ) (2024-06-11T10:30:19Z) - User Intent Recognition and Semantic Cache Optimization-Based Query Processing Framework using CFLIS and MGR-LAU [0.0]
この研究は、拡張QPのためのクエリにおける情報、ナビゲーション、およびトランザクションベースのインテントを分析した。
効率的なQPのために、データはEpanechnikov Kernel-Ordering Pointsを用いて構造化され、クラスタリング構造(EK-OPTICS)を同定する。
抽出された特徴、検出された意図、構造化データは、MGR-LAU(Multi-head Gated Recurrent Learnable Attention Unit)に入力される。
論文 参考訳(メタデータ) (2024-06-06T20:28:05Z) - Selecting Query-bag as Pseudo Relevance Feedback for Information-seeking Conversations [76.70349332096693]
情報検索対話システムは電子商取引システムで広く利用されている。
クエリバッグに基づくPseudo Relevance Feedback framework(QB-PRF)を提案する。
関連クエリを備えたクエリバッグを構築し、擬似シグナルとして機能し、情報検索の会話をガイドする。
論文 参考訳(メタデータ) (2024-03-22T08:10:32Z) - LIST: Learning to Index Spatio-Textual Data for Embedding based Spatial Keyword Queries [53.843367588870585]
リスト K-kNN 空間キーワードクエリ (TkQ) は、空間的およびテキスト的関連性の両方を考慮したランキング関数に基づくオブジェクトのリストを返す。
効率的かつ効率的な指標、すなわち高品質なラベルの欠如とバランスの取れない結果を構築する上で、大きな課題が2つある。
この2つの課題に対処する新しい擬似ラベル生成手法を開発した。
論文 参考訳(メタデータ) (2024-03-12T05:32:33Z) - Dense X Retrieval: What Retrieval Granularity Should We Use? [56.90827473115201]
しばしば見過ごされる設計選択は、コーパスが索引付けされる検索単位である。
本稿では,高密度検索のための新しい検索ユニット,命題を提案する。
実験により、提案のような細粒度単位によるコーパスのインデックス付けは、検索タスクにおける通過レベル単位を著しく上回っていることが明らかとなった。
論文 参考訳(メタデータ) (2023-12-11T18:57:35Z) - CAPSTONE: Curriculum Sampling for Dense Retrieval with Document
Expansion [68.19934563919192]
本稿では,学習中に擬似クエリを利用して,生成したクエリと実際のクエリとの関係を徐々に向上させるカリキュラムサンプリング戦略を提案する。
ドメイン内およびドメイン外両方のデータセットに対する実験結果から,本手法が従来の高密度検索モデルより優れていることが示された。
論文 参考訳(メタデータ) (2022-12-18T15:57:46Z) - Query-Response Interactions by Multi-tasks in Semantic Search for
Chatbot Candidate Retrieval [12.615150401073711]
本稿では,マルチタスクに基づくセマンティックサーチニューラルネットワーク(MSSNN)を提案する。
この方法はSeq2Seqモデリングタスクを使用して、優れたクエリエンコーダを学習し、応答埋め込みを構築するために単語予測タスクを実行し、最終的に単純なマッチングモデルを実行し、ドット積スコアラを形成する。
論文 参考訳(メタデータ) (2022-08-23T15:07:35Z) - Graph Enhanced BERT for Query Understanding [55.90334539898102]
クエリ理解は、ユーザの検索意図を探索し、ユーザが最も望まれる情報を発見できるようにする上で、重要な役割を果たす。
近年、プレトレーニング言語モデル (PLM) は様々な自然言語処理タスクを進歩させてきた。
本稿では,クエリコンテンツとクエリグラフの両方を活用可能な,グラフ強化事前学習フレームワークGE-BERTを提案する。
論文 参考訳(メタデータ) (2022-04-03T16:50:30Z) - Improving Query Representations for Dense Retrieval with Pseudo
Relevance Feedback [29.719150565643965]
本稿では,疑似関連性フィードバック(PRF)を用いて高密度検索のためのクエリ表現を改善する新しいクエリエンコーダであるANCE-PRFを提案する。
ANCE-PRF は BERT エンコーダを使用し、検索モデルである ANCE からクエリとトップ検索されたドキュメントを消費し、関連ラベルから直接クエリの埋め込みを生成する。
PRFエンコーダは、学習された注意機構でノイズを無視しながら、PRF文書から関連および補完的な情報を効果的にキャプチャする。
論文 参考訳(メタデータ) (2021-08-30T18:10:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。