Reducing Collision Checking for Sampling-Based Motion Planning Using
Graph Neural Networks
- URL: http://arxiv.org/abs/2210.08864v1
- Date: Mon, 17 Oct 2022 09:02:04 GMT
- Title: Reducing Collision Checking for Sampling-Based Motion Planning Using
Graph Neural Networks
- Authors: Chenning Yu and Sicun Gao
- Abstract summary: We propose new learning-based methods for reducing collision checking to accelerate motion planning.
We train graph neural networks (GNNs) that perform path exploration and path smoothing.
Experimental results show that the learned components can significantly reduce collision checking and improve overall planning efficiency.
- Score: 10.698553177585973
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sampling-based motion planning is a popular approach in robotics for finding
paths in continuous configuration spaces. Checking collision with obstacles is
the major computational bottleneck in this process. We propose new
learning-based methods for reducing collision checking to accelerate motion
planning by training graph neural networks (GNNs) that perform path exploration
and path smoothing. Given random geometric graphs (RGGs) generated from batch
sampling, the path exploration component iteratively predicts collision-free
edges to prioritize their exploration. The path smoothing component then
optimizes paths obtained from the exploration stage. The methods benefit from
the ability of GNNs of capturing geometric patterns from RGGs through batch
sampling and generalize better to unseen environments. Experimental results
show that the learned components can significantly reduce collision checking
and improve overall planning efficiency in challenging high-dimensional motion
planning tasks.
Related papers
- Diffusion Generative Flow Samplers: Improving learning signals through
partial trajectory optimization [87.21285093582446]
Diffusion Generative Flow Samplers (DGFS) is a sampling-based framework where the learning process can be tractably broken down into short partial trajectory segments.
Our method takes inspiration from the theory developed for generative flow networks (GFlowNets)
arXiv Detail & Related papers (2023-10-04T09:39:05Z) - Efficient Ground Vehicle Path Following in Game AI [77.34726150561087]
This paper presents an efficient path following solution for ground vehicles tailored to game AI.
The proposed path follower is evaluated through a variety of test scenarios in a first-person shooter game.
We achieved a 70% decrease in the total number of stuck events compared to an existing path following solution.
arXiv Detail & Related papers (2023-07-07T04:20:07Z) - Thompson sampling for improved exploration in GFlowNets [75.89693358516944]
Generative flow networks (GFlowNets) are amortized variational inference algorithms that treat sampling from a distribution over compositional objects as a sequential decision-making problem with a learnable action policy.
We show in two domains that TS-GFN yields improved exploration and thus faster convergence to the target distribution than the off-policy exploration strategies used in past work.
arXiv Detail & Related papers (2023-06-30T14:19:44Z) - CBAGAN-RRT: Convolutional Block Attention Generative Adversarial Network
for Sampling-Based Path Planning [0.0]
We propose a novel image-based learning algorithm (CBAGAN-RRT) using a Convolutional Block Attention Generative Adversarial Network.
The probability distribution of the paths generated from our GAN model is used to guide the sampling process for the RRT algorithm.
We train and test our network on the dataset generated by citezhang 2021 and demonstrate that our algorithm outperforms the previous state-of-the-art algorithms.
arXiv Detail & Related papers (2023-05-13T20:06:53Z) - Vision-aided UAV navigation and dynamic obstacle avoidance using
gradient-based B-spline trajectory optimization [7.874708385247353]
This paper proposes a gradient-based B-spline trajectory optimization algorithm utilizing the robot's onboard vision.
The proposed optimization first adopts the circle-based guide-point algorithm to approximate the costs and gradients for avoiding static obstacles.
With the vision-detected moving objects, our receding-horizon distance field is simultaneously used to prevent dynamic collisions.
arXiv Detail & Related papers (2022-09-15T02:12:30Z) - Neural Motion Fields: Encoding Grasp Trajectories as Implicit Value
Functions [65.84090965167535]
We present Neural Motion Fields, a novel object representation which encodes both object point clouds and the relative task trajectories as an implicit value function parameterized by a neural network.
This object-centric representation models a continuous distribution over the SE(3) space and allows us to perform grasping reactively by leveraging sampling-based MPC to optimize this value function.
arXiv Detail & Related papers (2022-06-29T18:47:05Z) - Collision-Free Navigation using Evolutionary Symmetrical Neural Networks [0.0]
This paper extends the previous work using evolutionary neural networks for reactive collision avoidance.
We are proposing a new method we have called symmetric neural networks.
The method improves the model's performance by enforcing constraints between the network weights.
arXiv Detail & Related papers (2022-03-29T13:02:14Z) - Autonomous Drone Racing with Deep Reinforcement Learning [39.757652701917166]
In many robotic tasks, such as drone racing, the goal is to travel through a set of waypoints as fast as possible.
A key challenge is planning the minimum-time trajectory, which is typically solved by assuming perfect knowledge of the waypoints to pass in advance.
In this work, a new approach to minimum-time trajectory generation for quadrotors is presented.
arXiv Detail & Related papers (2021-03-15T18:05:49Z) - Conditional Generative Adversarial Networks for Optimal Path Planning [30.892250698479064]
We propose a novel learning-based path planning algorithm based on the conditional generative adversarial networks (CGAN) and a modified RRT* algorithm (denoted by CGANRRT*)
The CGAN model is trained by learning from ground truth maps, each of which is generated by putting all the results of executing RRT algorithm 50 times on one raw map.
We demonstrate the efficient performance of this CGAN model by testing it on two groups of maps and comparing CGAN-RRT* algorithm with conventional RRT* algorithm.
arXiv Detail & Related papers (2020-12-06T02:53:50Z) - Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for
Online Collision Avoidance [95.86944752753564]
We propose an online path planning architecture that extends the model predictive control (MPC) formulation to consider future location uncertainties.
Our algorithm combines an object detection pipeline with a recurrent neural network (RNN) which infers the covariance of state estimates.
The robustness of our methods is validated on complex quadruped robot dynamics and can be generally applied to most robotic platforms.
arXiv Detail & Related papers (2020-07-28T07:34:30Z) - Learning to Optimize Non-Rigid Tracking [54.94145312763044]
We employ learnable optimizations to improve robustness and speed up solver convergence.
First, we upgrade the tracking objective by integrating an alignment data term on deep features which are learned end-to-end through CNN.
Second, we bridge the gap between the preconditioning technique and learning method by introducing a ConditionNet which is trained to generate a preconditioner.
arXiv Detail & Related papers (2020-03-27T04:40:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.