論文の概要: Conditional Neural Processes for Molecules
- arxiv url: http://arxiv.org/abs/2210.09211v1
- Date: Mon, 17 Oct 2022 16:10:12 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-18 17:15:32.595499
- Title: Conditional Neural Processes for Molecules
- Title(参考訳): 分子の条件付き神経プロセス
- Authors: Miguel Garcia-Ortegon, Andreas Bender and Sergio Bacallado
- Abstract要約: ニューラルプロセス(NPs)はガウス過程(GPs)に類似した特性を持つ伝達学習のモデルである
本稿では,MLモデルのベンチマークのためのドッキングスコアのデータセットであるDOCKSTRINGに対して,条件付きニューラルプロセス(CNP)を適用する。
CNPは、QSARモデリングに共通する教師付き学習ベースラインに対して、数ショットの学習タスクにおいて、競合する性能を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural processes (NPs) are models for transfer learning with properties
reminiscent of Gaussian Processes (GPs). They are adept at modelling data
consisting of few observations of many related functions on the same input
space and are trained by minimizing a variational objective, which is
computationally much less expensive than the Bayesian updating required by GPs.
So far, most studies of NPs have focused on low-dimensional datasets which are
not representative of realistic transfer learning tasks. Drug discovery is one
application area that is characterized by datasets consisting of many chemical
properties or functions which are sparsely observed, yet depend on shared
features or representations of the molecular inputs. This paper applies the
conditional neural process (CNP) to DOCKSTRING, a dataset of docking scores for
benchmarking ML models. CNPs show competitive performance in few-shot learning
tasks relative to supervised learning baselines common in QSAR modelling, as
well as an alternative model for transfer learning based on pre-training and
refining neural network regressors. We present a Bayesian optimization
experiment which showcases the probabilistic nature of CNPs and discuss
shortcomings of the model in uncertainty quantification.
- Abstract(参考訳): ニューラルプロセス(英: Neural Process, NP)は、ガウス過程(英語版) (GP) に類似した特性を持つ伝達学習のモデルである。
それらは同じ入力空間で多くの関連する関数をほとんど観測しないデータモデリングに長けており、gpsが要求するベイズ更新よりも計算コストがはるかに低い変動目標を最小化することで訓練される。
これまで、NPのほとんどの研究は、現実的な伝達学習タスクを代表していない低次元データセットに焦点を当ててきた。
薬物発見は、多くの化学的性質や機能からなるデータセットによって特徴づけられる応用分野の一つであり、わずかに観察されているが、分子入力の共有特徴や表現に依存している。
本稿では,MLモデルのベンチマークのためのドッキングスコアのデータセットであるDOCKSTRINGに対して,条件付きニューラルプロセス(CNP)を適用する。
cnpは、qsarモデルに共通する教師付き学習ベースラインと、ニューラルネットワークレグレッタの事前トレーニングと改良に基づくトランスファー学習の代替モデルと比較して、数少ない学習タスクにおいて競争力を示す。
我々は,CNPの確率的性質を示すベイズ最適化実験を行い,不確実な定量化におけるモデルの欠点について議論する。
関連論文リスト
- Active Learning with Fully Bayesian Neural Networks for Discontinuous and Nonstationary Data [0.0]
我々は,「小さなデータ」体制下でのアクティブな学習タスクに対して,完全ベイズニューラルネットワーク(FBNN)を導入する。
FBNNは信頼性の高い予測分布を提供し、アクティブな学習環境における不確実性の下で情報的意思決定に不可欠である。
そこで我々は,FBNNの「小型データ」システムにおけるアクティブな学習課題に対するNo-U-Turn Samplerを用いて,FBNNの適合性と性能を評価する。
論文 参考訳(メタデータ) (2024-05-16T05:20:47Z) - Spectral Convolutional Conditional Neural Processes [4.52069311861025]
条件付きニューラルプロセス(CNP)は、プロセスのパラメータ化にニューラルネットワークの柔軟性を利用する確率モデルの一群である。
本稿では、周波数領域における関数のより効率的な表現を可能にするNPsファミリーに新たに追加されたスペクトル畳み込み条件ニューラルネットワーク(SConvCNPs)を提案する。
論文 参考訳(メタデータ) (2024-04-19T21:13:18Z) - Gaussian Process Neural Additive Models [3.7969209746164325]
ランダムフーリエ特徴を用いたガウス過程の単一層ニューラルネットワーク構築を用いたニューラル付加モデル(NAM)の新たなサブクラスを提案する。
GP-NAMは凸目的関数と、特徴次元と線形に成長する訓練可能なパラメータの数が有利である。
GP-NAMは,パラメータ数を大幅に削減して,分類タスクと回帰タスクの両方において,同等あるいはより優れた性能が得られることを示す。
論文 参考訳(メタデータ) (2024-02-19T20:29:34Z) - Autoregressive Conditional Neural Processes [20.587835119831595]
条件付きニューラルプロセス(CNP)は魅力的なメタラーニングモデルである。
それらはよく校正された予測を生成し、単純な最大極大手順で訓練することができる。
CNPは、予測において依存関係をモデル化できない。
我々は、モデルやトレーニング手順を変更することなく、テスト時にCNPをどのように展開するかを変更することを提案する。
論文 参考訳(メタデータ) (2023-03-25T13:34:12Z) - Dynamically-Scaled Deep Canonical Correlation Analysis [77.34726150561087]
カノニカル相関解析 (CCA) は, 2つのビューの特徴抽出手法である。
本稿では,入力依存の正準相関モデルをトレーニングするための新しい動的スケーリング手法を提案する。
論文 参考訳(メタデータ) (2022-03-23T12:52:49Z) - Practical Conditional Neural Processes Via Tractable Dependent
Predictions [25.15531845287349]
条件付きニューラルプロセス(CNP)は、ディープラーニングの柔軟性を利用して、よく校正された予測を生成するメタラーニングモデルである。
CNPは相関予測を生成せず、多くの見積もりや意思決定タスクに不適当である。
本稿では,相関予測を行い,精度の高い学習を支援するニューラル・プロセス・モデルを提案する。
論文 参考訳(メタデータ) (2022-03-16T17:37:41Z) - Closed-form Continuous-Depth Models [99.40335716948101]
連続深度ニューラルモデルは高度な数値微分方程式解法に依存している。
我々は,CfCネットワークと呼ばれる,記述が簡単で,少なくとも1桁高速な新しいモデル群を提示する。
論文 参考訳(メタデータ) (2021-06-25T22:08:51Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
ディープニューラルネットワークと互換性のあるアクティブな学習アルゴリズムの必要性が高まっている。
本稿では,ニューラルネットワークのための抽出可能かつ高性能な能動学習アルゴリズムBAITを紹介する。
論文 参考訳(メタデータ) (2021-06-17T17:26:31Z) - Deep Bayesian Active Learning for Accelerating Stochastic Simulation [74.58219903138301]
Interactive Neural Process(INP)は、シミュレーションとアクティブな学習アプローチのためのディープラーニングフレームワークである。
能動的学習のために,NPベースモデルの潜時空間で計算された新しい取得関数Latent Information Gain (LIG)を提案する。
その結果,STNPは学習環境のベースラインを上回り,LIGは能動学習の最先端を達成していることがわかった。
論文 参考訳(メタデータ) (2021-06-05T01:31:51Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
偏微分方程式 (PDE) を解くことは、多くのプロセスがPDEの観点でモデル化できるため、科学の多くの分野において不可欠である。
最近の数値解法では、基礎となる方程式を手動で離散化するだけでなく、分散コンピューティングのための高度で調整されたコードも必要である。
偏微分方程式, 物理インフォームドニューラルネットワーク(PINN)に対する連続メッシュフリーニューラルネットワークの適用性について検討する。
本稿では,解析解に関するGatedPINNの精度と,スペクトル解法などの最先端数値解法について論じる。
論文 参考訳(メタデータ) (2020-09-08T13:26:51Z) - Bootstrapping Neural Processes [114.97111530885093]
ニューラル・プロセス(NP)は、ニューラルネットワークを用いた幅広いプロセスのクラスを暗黙的に定義する。
NPは、プロセスの不確実性は単一の潜在変数によってモデル化されるという仮定に依存している。
本稿では,ブートストラップを用いたNPファミリーの新規拡張であるBoostrapping Neural Process (BNP)を提案する。
論文 参考訳(メタデータ) (2020-08-07T02:23:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。