Learning Control Admissibility Models with Graph Neural Networks for
Multi-Agent Navigation
- URL: http://arxiv.org/abs/2210.09378v1
- Date: Mon, 17 Oct 2022 19:20:58 GMT
- Title: Learning Control Admissibility Models with Graph Neural Networks for
Multi-Agent Navigation
- Authors: Chenning Yu, Hongzhan Yu and Sicun Gao
- Abstract summary: Control admissibility models (CAMs) can be easily composed and used for online inference for an arbitrary number of agents.
We show that the CAM models can be trained in environments with only a few agents and be easily composed for deployment in dense environments with hundreds of agents, achieving better performance than state-of-the-art methods.
- Score: 9.05607520128194
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep reinforcement learning in continuous domains focuses on learning control
policies that map states to distributions over actions that ideally concentrate
on the optimal choices in each step. In multi-agent navigation problems, the
optimal actions depend heavily on the agents' density. Their interaction
patterns grow exponentially with respect to such density, making it hard for
learning-based methods to generalize. We propose to switch the learning
objectives from predicting the optimal actions to predicting sets of admissible
actions, which we call control admissibility models (CAMs), such that they can
be easily composed and used for online inference for an arbitrary number of
agents. We design CAMs using graph neural networks and develop training methods
that optimize the CAMs in the standard model-free setting, with the additional
benefit of eliminating the need for reward engineering typically required to
balance collision avoidance and goal-reaching requirements. We evaluate the
proposed approach in multi-agent navigation environments. We show that the CAM
models can be trained in environments with only a few agents and be easily
composed for deployment in dense environments with hundreds of agents,
achieving better performance than state-of-the-art methods.
Related papers
- From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
We introduce StepAgent, which utilizes step-wise reward to optimize the agent's reinforcement learning process.
We propose implicit-reward and inverse reinforcement learning techniques to facilitate agent reflection and policy adjustment.
arXiv Detail & Related papers (2024-11-06T10:35:11Z) - M$^{2}$M: Learning controllable Multi of experts and multi-scale operators are the Partial Differential Equations need [43.534771810528305]
This paper introduces a framework of multi-scale and multi-expert (M$2$M) neural operators to simulate and learn PDEs efficiently.
We employ a divide-and-conquer strategy to train a multi-expert gated network for the dynamic router policy.
Our method incorporates a controllable prior gating mechanism that determines the selection rights of experts, enhancing the model's efficiency.
arXiv Detail & Related papers (2024-10-01T15:42:09Z) - Efficient Adaptation in Mixed-Motive Environments via Hierarchical Opponent Modeling and Planning [51.52387511006586]
We propose Hierarchical Opponent modeling and Planning (HOP), a novel multi-agent decision-making algorithm.
HOP is hierarchically composed of two modules: an opponent modeling module that infers others' goals and learns corresponding goal-conditioned policies.
HOP exhibits superior few-shot adaptation capabilities when interacting with various unseen agents, and excels in self-play scenarios.
arXiv Detail & Related papers (2024-06-12T08:48:06Z) - PD-MORL: Preference-Driven Multi-Objective Reinforcement Learning
Algorithm [0.18416014644193063]
We propose a novel MORL algorithm that trains a single universal network to cover the entire preference space scalable to continuous robotic tasks.
PD-MORL achieves up to 25% larger hypervolume for challenging continuous control tasks and uses an order of magnitude fewer trainable parameters compared to prior approaches.
arXiv Detail & Related papers (2022-08-16T19:23:02Z) - Fully Decentralized Model-based Policy Optimization for Networked
Systems [23.46407780093797]
This work aims to improve data efficiency of multi-agent control by model-based learning.
We consider networked systems where agents are cooperative and communicate only locally with their neighbors.
In our method, each agent learns a dynamic model to predict future states and broadcast their predictions by communication, and then the policies are trained under the model rollouts.
arXiv Detail & Related papers (2022-07-13T23:52:14Z) - Multitask Adaptation by Retrospective Exploration with Learned World
Models [77.34726150561087]
We propose a meta-learned addressing model called RAMa that provides training samples for the MBRL agent taken from task-agnostic storage.
The model is trained to maximize the expected agent's performance by selecting promising trajectories solving prior tasks from the storage.
arXiv Detail & Related papers (2021-10-25T20:02:57Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z) - Deep Interactive Bayesian Reinforcement Learning via Meta-Learning [63.96201773395921]
The optimal adaptive behaviour under uncertainty over the other agents' strategies can be computed using the Interactive Bayesian Reinforcement Learning framework.
We propose to meta-learn approximate belief inference and Bayes-optimal behaviour for a given prior.
We show empirically that our approach outperforms existing methods that use a model-free approach, sample from the approximate posterior, maintain memory-free models of others, or do not fully utilise the known structure of the environment.
arXiv Detail & Related papers (2021-01-11T13:25:13Z) - Multi-agent navigation based on deep reinforcement learning and
traditional pathfinding algorithm [0.0]
We develop a new framework for multi-agent collision avoidance problem.
The framework combined traditional pathfinding algorithm and reinforcement learning.
In our approach, the agents learn whether to be navigated or to take simple actions to avoid their partners.
arXiv Detail & Related papers (2020-12-05T08:56:58Z) - MAPPER: Multi-Agent Path Planning with Evolutionary Reinforcement
Learning in Mixed Dynamic Environments [30.407700996710023]
This paper proposes a decentralized partially observable multi-agent path planning with evolutionary reinforcement learning (MAPPER) method.
We decompose the long-range navigation task into many easier sub-tasks under the guidance of a global planner.
Our approach models dynamic obstacles' behavior with an image-based representation and trains a policy in mixed dynamic environments without homogeneity assumption.
arXiv Detail & Related papers (2020-07-30T20:14:42Z) - Model-based Reinforcement Learning for Decentralized Multiagent
Rendezvous [66.6895109554163]
Underlying the human ability to align goals with other agents is their ability to predict the intentions of others and actively update their own plans.
We propose hierarchical predictive planning (HPP), a model-based reinforcement learning method for decentralized multiagent rendezvous.
arXiv Detail & Related papers (2020-03-15T19:49:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.