M$^{2}$M: Learning controllable Multi of experts and multi-scale operators are the Partial Differential Equations need
- URL: http://arxiv.org/abs/2410.11617v1
- Date: Tue, 01 Oct 2024 15:42:09 GMT
- Title: M$^{2}$M: Learning controllable Multi of experts and multi-scale operators are the Partial Differential Equations need
- Authors: Aoming Liang, Zhaoyang Mu, Pengxiao Lin, Cong Wang, Mingming Ge, Ling Shao, Dixia Fan, Hao Tang,
- Abstract summary: This paper introduces a framework of multi-scale and multi-expert (M$2$M) neural operators to simulate and learn PDEs efficiently.
We employ a divide-and-conquer strategy to train a multi-expert gated network for the dynamic router policy.
Our method incorporates a controllable prior gating mechanism that determines the selection rights of experts, enhancing the model's efficiency.
- Score: 43.534771810528305
- License:
- Abstract: Learning the evolutionary dynamics of Partial Differential Equations (PDEs) is critical in understanding dynamic systems, yet current methods insufficiently learn their representations. This is largely due to the multi-scale nature of the solution, where certain regions exhibit rapid oscillations while others evolve more slowly. This paper introduces a framework of multi-scale and multi-expert (M$^2$M) neural operators designed to simulate and learn PDEs efficiently. We employ a divide-and-conquer strategy to train a multi-expert gated network for the dynamic router policy. Our method incorporates a controllable prior gating mechanism that determines the selection rights of experts, enhancing the model's efficiency. To optimize the learning process, we have implemented a PI (Proportional, Integral) control strategy to adjust the allocation rules precisely. This universal controllable approach allows the model to achieve greater accuracy. We test our approach on benchmark 2D Navier-Stokes equations and provide a custom multi-scale dataset. M$^2$M can achieve higher simulation accuracy and offer improved interpretability compared to baseline methods.
Related papers
- Towards Efficient Pareto Set Approximation via Mixture of Experts Based Model Fusion [53.33473557562837]
Solving multi-objective optimization problems for large deep neural networks is a challenging task due to the complexity of the loss landscape and the expensive computational cost.
We propose a practical and scalable approach to solve this problem via mixture of experts (MoE) based model fusion.
By ensembling the weights of specialized single-task models, the MoE module can effectively capture the trade-offs between multiple objectives.
arXiv Detail & Related papers (2024-06-14T07:16:18Z) - M2NO: Multiresolution Operator Learning with Multiwavelet-based Algebraic Multigrid Method [13.93532934867225]
We introduce the Multiwavelet-based Algebraic Multigrid Neural Operator (M2NO), a novel deep learning framework.
By exploiting the inherent similarities between these two approaches, M2NO enhances precision and flexibility across various PDE benchmarks.
M2NO excels in handling high-resolution and super-resolution tasks, consistently outperforming competing models.
arXiv Detail & Related papers (2024-06-07T10:47:40Z) - Intuition-aware Mixture-of-Rank-1-Experts for Parameter Efficient Finetuning [50.73666458313015]
Large Language Models (LLMs) have demonstrated significant potential in performing multiple tasks in multimedia applications.
MoE has been emerged as a promising solution with its sparse architecture for effective task decoupling.
Intuition-MoR1E achieves superior efficiency and 2.15% overall accuracy improvement across 14 public datasets.
arXiv Detail & Related papers (2024-04-13T12:14:58Z) - When Parameter-efficient Tuning Meets General-purpose Vision-language
Models [65.19127815275307]
PETAL revolutionizes the training process by requiring only 0.5% of the total parameters, achieved through a unique mode approximation technique.
Our experiments reveal that PETAL not only outperforms current state-of-the-art methods in most scenarios but also surpasses full fine-tuning models in effectiveness.
arXiv Detail & Related papers (2023-12-16T17:13:08Z) - Learning Control Admissibility Models with Graph Neural Networks for
Multi-Agent Navigation [9.05607520128194]
Control admissibility models (CAMs) can be easily composed and used for online inference for an arbitrary number of agents.
We show that the CAM models can be trained in environments with only a few agents and be easily composed for deployment in dense environments with hundreds of agents, achieving better performance than state-of-the-art methods.
arXiv Detail & Related papers (2022-10-17T19:20:58Z) - Model-Based Deep Learning: On the Intersection of Deep Learning and
Optimization [101.32332941117271]
Decision making algorithms are used in a multitude of different applications.
Deep learning approaches that use highly parametric architectures tuned from data without relying on mathematical models are becoming increasingly popular.
Model-based optimization and data-centric deep learning are often considered to be distinct disciplines.
arXiv Detail & Related papers (2022-05-05T13:40:08Z) - Interfacing Finite Elements with Deep Neural Operators for Fast
Multiscale Modeling of Mechanics Problems [4.280301926296439]
In this work, we explore the idea of multiscale modeling with machine learning and employ DeepONet, a neural operator, as an efficient surrogate of the expensive solver.
DeepONet is trained offline using data acquired from the fine solver for learning the underlying and possibly unknown fine-scale dynamics.
We present various benchmarks to assess accuracy and speedup, and in particular we develop a coupling algorithm for a time-dependent problem.
arXiv Detail & Related papers (2022-02-25T20:46:08Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.