Transfer learning with weak labels from radiology reports: application
to glioma change detection
- URL: http://arxiv.org/abs/2210.09698v1
- Date: Tue, 18 Oct 2022 09:15:27 GMT
- Title: Transfer learning with weak labels from radiology reports: application
to glioma change detection
- Authors: Tommaso Di Noto, Meritxell Bach Cuadra, Chirine Atat, Eduardo Gamito
Teiga, Monika Hegi, Andreas Hottinger, Patric Hagmann, Jonas Richiardi
- Abstract summary: We propose a combined use of weak labels (imprecise, but fast-to-create annotations) and Transfer Learning (TL)
Specifically, we explore inductive TL, where source and target domains are identical, but tasks are different due to a label shift.
We investigate the relationship between model size and TL, comparing a low-capacity VGG with a higher-capacity SEResNeXt.
- Score: 0.2010294990327175
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Creating large annotated datasets represents a major bottleneck for the
development of deep learning models in radiology. To overcome this, we propose
a combined use of weak labels (imprecise, but fast-to-create annotations) and
Transfer Learning (TL). Specifically, we explore inductive TL, where source and
target domains are identical, but tasks are different due to a label shift: our
target labels are created manually by three radiologists, whereas the source
weak labels are generated automatically from textual radiology reports. We
frame knowledge transfer as hyperparameter optimization, thus avoiding
heuristic choices that are frequent in related works. We investigate the
relationship between model size and TL, comparing a low-capacity VGG with a
higher-capacity SEResNeXt. The task that we address is change detection in
follow-up glioma imaging: we extracted 1693 T2-weighted magnetic resonance
imaging difference maps from 183 patients, and classified them into stable or
unstable according to tumor evolution. Weak labeling allowed us to increase
dataset size more than 3-fold, and improve VGG classification results from 75%
to 82% Area Under the ROC Curve (AUC) (p=0.04). Mixed training from scratch led
to higher performance than fine-tuning or feature extraction. To assess
generalizability, we also ran inference on an open dataset (BraTS-2015: 15
patients, 51 difference maps), reaching up to 76% AUC. Overall, results suggest
that medical imaging problems may benefit from smaller models and different TL
strategies with respect to computer vision problems, and that report-generated
weak labels are effective in improving model performances. Code, in-house
dataset and BraTS labels are released.
Related papers
- Weakly-supervised positional contrastive learning: application to
cirrhosis classification [45.63061034568991]
Large medical imaging datasets can be cheaply annotated with low-confidence, weak labels.
Access to high-confidence labels, such as histology-based diagnoses, is rare and costly.
We propose an efficient weakly-supervised positional (WSP) contrastive learning strategy.
arXiv Detail & Related papers (2023-07-10T15:02:13Z) - Generative models improve fairness of medical classifiers under
distribution shifts [49.10233060774818]
We show that learning realistic augmentations automatically from data is possible in a label-efficient manner using generative models.
We demonstrate that these learned augmentations can surpass ones by making models more robust and statistically fair in- and out-of-distribution.
arXiv Detail & Related papers (2023-04-18T18:15:38Z) - Data-Efficient Vision Transformers for Multi-Label Disease
Classification on Chest Radiographs [55.78588835407174]
Vision Transformers (ViTs) have not been applied to this task despite their high classification performance on generic images.
ViTs do not rely on convolutions but on patch-based self-attention and in contrast to CNNs, no prior knowledge of local connectivity is present.
Our results show that while the performance between ViTs and CNNs is on par with a small benefit for ViTs, DeiTs outperform the former if a reasonably large data set is available for training.
arXiv Detail & Related papers (2022-08-17T09:07:45Z) - Attributed Abnormality Graph Embedding for Clinically Accurate X-Ray
Report Generation [7.118069629513661]
We introduce a novel fined-grained knowledge graph structure called an attributed abnormality graph (ATAG)
The ATAG consists of interconnected abnormality nodes and attribute nodes, allowing it to better capture the abnormality details.
We show that the proposed ATAG-based deep model outperforms the SOTA methods by a large margin and can improve the clinical accuracy of the generated reports.
arXiv Detail & Related papers (2022-07-04T05:32:00Z) - Severity Quantification and Lesion Localization of COVID-19 on CXR using
Vision Transformer [25.144248675578286]
Under the global pandemic of COVID-19, building an automated framework that quantifies the severity of COVID-19 has become increasingly important.
We propose a novel Vision Transformer tailored for both quantification of the severity and clinically applicable localization of the COVID-19 related lesions.
Our model is trained in a weakly-supervised manner to generate the full probability maps from weak array-based labels.
arXiv Detail & Related papers (2021-03-12T03:17:19Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Weakly-Supervised Cross-Domain Adaptation for Endoscopic Lesions
Segmentation [79.58311369297635]
We propose a new weakly-supervised lesions transfer framework, which can explore transferable domain-invariant knowledge across different datasets.
A Wasserstein quantified transferability framework is developed to highlight widerange transferable contextual dependencies.
A novel self-supervised pseudo label generator is designed to equally provide confident pseudo pixel labels for both hard-to-transfer and easy-to-transfer target samples.
arXiv Detail & Related papers (2020-12-08T02:26:03Z) - An anatomically-informed 3D CNN for brain aneurysm classification with
weak labels [0.2010294990327175]
We address the task of brain aneurysm detection as a patch-wise binary classification with weak labels.
Our approach comes with the non-trivial challenge of the data set creation.
We propose a novel, anatomically-driven approach by using a multi-scale and multi-input 3D Convolutional Neural Network.
arXiv Detail & Related papers (2020-11-27T08:00:54Z) - Learning from Multiple Datasets with Heterogeneous and Partial Labels
for Universal Lesion Detection in CT [25.351709433029896]
We build a simple yet effective lesion detection framework named Lesion ENSemble (LENS)
LENS can efficiently learn from multiple heterogeneous lesion datasets in a multi-task fashion.
We train our framework on four public lesion datasets and evaluate it on 800 manually-labeled sub-volumes in DeepLesion.
arXiv Detail & Related papers (2020-09-05T17:55:21Z) - ATSO: Asynchronous Teacher-Student Optimization for Semi-Supervised
Medical Image Segmentation [99.90263375737362]
We propose ATSO, an asynchronous version of teacher-student optimization.
ATSO partitions the unlabeled data into two subsets and alternately uses one subset to fine-tune the model and updates the label on the other subset.
We evaluate ATSO on two popular medical image segmentation datasets and show its superior performance in various semi-supervised settings.
arXiv Detail & Related papers (2020-06-24T04:05:12Z) - Deep Mining External Imperfect Data for Chest X-ray Disease Screening [57.40329813850719]
We argue that incorporating an external CXR dataset leads to imperfect training data, which raises the challenges.
We formulate the multi-label disease classification problem as weighted independent binary tasks according to the categories.
Our framework simultaneously models and tackles the domain and label discrepancies, enabling superior knowledge mining ability.
arXiv Detail & Related papers (2020-06-06T06:48:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.