Measurement induced quantum walks on an IBM Quantum Computer
- URL: http://arxiv.org/abs/2210.09941v1
- Date: Tue, 18 Oct 2022 15:45:24 GMT
- Title: Measurement induced quantum walks on an IBM Quantum Computer
- Authors: Sabine Tornow and Klaus Ziegler
- Abstract summary: We study a quantum walk of a single particle subject to stroboscopic projective measurements on a graph with two sites.
The mean first detected transition and return time are computed on an IBM quantum computer.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study a quantum walk of a single particle that is subject to stroboscopic
projective measurements on a graph with two sites. This two-level system is the
minimal model of a measurement induced quantum walk. The mean first detected
transition and return time are computed on an IBM quantum computer as a
function of the hopping matrix element between the sites and the on-site
potential. The experimentally monitored quantum walk reveals the theoretically
predicted behavior, such as the quantization of the first detected return time
and the strong increase of the mean first detected transition time near
degenerate points, with high accuracy.
Related papers
- Direct Probe of Topology and Geometry of Quantum States on IBM Q [2.7801206308522417]
We show that a density matrix form of the quantum geometric tensor (QGT) can be explicitly re-constructed from Pauli operator measurements on a quantum circuit.
We propose two algorithms, suitable for IBM quantum computers, to directly probe QGT.
Explicit results obtained from IBM Q a Chern insulator model are presented and analysed.
arXiv Detail & Related papers (2024-03-21T09:18:16Z) - First Hitting Times on a Quantum Computer: Tracking vs. Local Monitoring, Topological Effects, and Dark States [1.352425155225249]
We investigate a quantum walk on a ring represented by a directed triangle graph with complex edge weights.
The first hitting time statistics are recorded using unitary dynamics interspersed stroboscopically by measurements.
We conclude that, for the IBM quantum computer under study, the first hitting times of monitored quantum walks are resilient to noise.
arXiv Detail & Related papers (2024-02-24T15:59:25Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Measurement-induced entanglement and teleportation on a noisy quantum
processor [105.44548669906976]
We investigate measurement-induced quantum information phases on up to 70 superconducting qubits.
We use a duality mapping, to avoid mid-circuit measurement and access different manifestations of the underlying phases.
Our work demonstrates an approach to realize measurement-induced physics at scales that are at the limits of current NISQ processors.
arXiv Detail & Related papers (2023-03-08T18:41:53Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
We present an approach where the quantum computation is supplemented by a classical result.
Taking advantage of its anticipation also leads to a new type of quantum measurements, which we call anticipative.
In an anticipative quantum measurement the combination of the results from classical and quantum computations happens only in the end.
arXiv Detail & Related papers (2022-09-12T15:47:44Z) - Scalable Simulation of Quantum Measurement Process with Quantum
Computers [13.14263204660076]
We propose qubit models to emulate the quantum measurement process.
One model is motivated by single-photon detection and the other by spin measurement.
We generate Schr"odinger cat-like state, and their corresponding quantum circuits are shown explicitly.
arXiv Detail & Related papers (2022-06-28T14:21:43Z) - An Amplitude-Based Implementation of the Unit Step Function on a Quantum
Computer [0.0]
We introduce an amplitude-based implementation for approximating non-linearity in the form of the unit step function on a quantum computer.
We describe two distinct circuit types which receive their input either directly from a classical computer, or as a quantum state when embedded in a more advanced quantum algorithm.
arXiv Detail & Related papers (2022-06-07T07:14:12Z) - Determining ground-state phase diagrams on quantum computers via a
generalized application of adiabatic state preparation [61.49303789929307]
We use a local adiabatic ramp for state preparation to allow us to directly compute ground-state phase diagrams on a quantum computer via time evolution.
We are able to calculate an accurate phase diagram on both two and three site systems using IBM quantum machines.
arXiv Detail & Related papers (2021-12-08T23:59:33Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Quantum walk processes in quantum devices [55.41644538483948]
We study how to represent quantum walk on a graph as a quantum circuit.
Our approach paves way for the efficient implementation of quantum walks algorithms on quantum computers.
arXiv Detail & Related papers (2020-12-28T18:04:16Z) - Pure State Tomography with Fourier Transformation [3.469001874498102]
Two adaptive protocols are proposed, with their respective quantum circuits.
Experiments on the IBM 5-qubit quantum computer, as well as numerical investigations, demonstrate the feasibility of the proposed protocols.
arXiv Detail & Related papers (2020-08-20T17:13:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.