論文の概要: A Survey of Active Learning for Natural Language Processing
- arxiv url: http://arxiv.org/abs/2210.10109v1
- Date: Tue, 18 Oct 2022 19:14:42 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-20 14:01:51.790523
- Title: A Survey of Active Learning for Natural Language Processing
- Title(参考訳): 自然言語処理のためのアクティブラーニングに関する調査
- Authors: Zhisong Zhang, Emma Strubell, Eduard Hovy
- Abstract要約: 自然言語処理(NLP)におけるアクティブラーニング(AL)の応用について調査する。
クエリ戦略の詳細な分類に加えて,ALをNLP問題に適用する上で重要な側面についても検討する。
- 参考スコア(独自算出の注目度): 14.476936052458358
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we provide a survey of active learning (AL) for its
applications in natural language processing (NLP). In addition to a
fine-grained categorization of query strategies, we also investigate several
other important aspects of applying AL to NLP problems. These include AL for
structured prediction tasks, annotation cost, model learning (especially with
deep neural models), and starting and stopping AL. Finally, we conclude with a
discussion of related topics and future directions.
- Abstract(参考訳): 本研究では,自然言語処理(NLP)におけるアクティブラーニング(AL)の応用について調査する。
クエリ戦略の詳細な分類に加えて,ALをNLP問題に適用する上で重要な側面についても検討する。
これには、構造化予測タスクのためのAL、アノテーションコスト、モデル学習(特にディープニューラルネットワークモデル)、ALの開始と停止が含まれる。
最後に、関連するトピックと今後の方向性について議論する。
関連論文リスト
- Large Language Models Meet NLP: A Survey [79.74450825763851]
大規模言語モデル(LLM)は自然言語処理(NLP)タスクにおいて印象的な機能を示している。
本研究は,以下の課題を探求することによって,このギャップに対処することを目的とする。
論文 参考訳(メタデータ) (2024-05-21T14:24:01Z) - Survey of Natural Language Processing for Education: Taxonomy, Systematic Review, and Future Trends [26.90343340881045]
我々は、NLPの最近の進歩を、教育領域に関連する問題の解決に焦点をあててレビューする。
教育領域におけるNLPの分類について述べるとともに,質問応答,質問構築,自動評価,誤り訂正など,典型的なNLPの応用に注目した。
今後の研究には、教育領域におけるデータセットの増加、LCMの制御可能な利用、難易度制御の介入、解釈可能な教育的NLP、適応学習の方法、教育統合システムなど、有望な6つの方向性をまとめる。
論文 参考訳(メタデータ) (2024-01-15T07:48:42Z) - Natural Language Processing for Dialects of a Language: A Survey [56.93337350526933]
最先端自然言語処理(NLP)モデルは、大規模なトレーニングコーパスでトレーニングされ、評価データセットで最上位のパフォーマンスを報告します。
この調査は、これらのデータセットの重要な属性である言語の方言を掘り下げる。
方言データセットに対するNLPモデルの性能劣化と言語技術のエクイティへのその影響を動機として,我々はデータセットやアプローチの観点から,方言に対するNLPの過去の研究を調査した。
論文 参考訳(メタデータ) (2024-01-11T03:04:38Z) - Ling-CL: Understanding NLP Models through Linguistic Curricula [17.44112549879293]
我々は精神言語学と言語習得研究から言語複雑性の特徴づけを取り入れている。
我々は、モデルがNLPタスクに対処するために学習する基礎となる言語知識を理解するために、データ駆動型カリキュラムを開発する。
論文 参考訳(メタデータ) (2023-10-31T01:44:33Z) - Active Learning for Natural Language Generation [17.14395724301382]
本稿では,自然言語生成のための能動的学習に関する最初の体系的研究について述べる。
以上の結果から,既存のAL戦略は不整合であることが示唆された。
分類と生成シナリオの顕著な違いを強調し,既存のAL戦略の選択行動を分析する。
論文 参考訳(メタデータ) (2023-05-24T11:27:53Z) - A Survey of Knowledge Enhanced Pre-trained Language Models [78.56931125512295]
我々は、知識強化事前学習言語モデル(KE-PLMs)の包括的なレビューを行う。
NLUでは、言語知識、テキスト知識、知識グラフ(KG)、ルール知識の4つのカテゴリに分類する。
NLGのKE-PLMは、KGベースと検索ベースに分類される。
論文 参考訳(メタデータ) (2022-11-11T04:29:02Z) - A Survey of Methods for Addressing Class Imbalance in Deep-Learning
Based Natural Language Processing [68.37496795076203]
非バランスなデータを扱うNLP研究者や実践者に対してガイダンスを提供する。
まず、制御および実世界のクラス不均衡の様々なタイプについて論じる。
サンプリング,データ拡張,損失関数の選択,ステージ学習,モデル設計に基づく手法を整理する。
論文 参考訳(メタデータ) (2022-10-10T13:26:40Z) - Meta Learning for Natural Language Processing: A Survey [88.58260839196019]
ディープラーニングは自然言語処理(NLP)分野において主要な技術である。
ディープラーニングには多くのラベル付きデータが必要です。
メタ学習は、より良いアルゴリズムを学ぶためのアプローチを研究する機械学習の分野である。
論文 参考訳(メタデータ) (2022-05-03T13:58:38Z) - Task-specific Objectives of Pre-trained Language Models for Dialogue
Adaptation [79.0866650271659]
PrLMを利用する一般的なプロセスは、まずタスク非依存のLMトレーニング目標を持つ大規模汎用コーパス上で事前トレーニングを行い、タスク固有のトレーニング目標を持つタスクデータセットを微調整する。
タスク固有の目的を持つドメイン内タスク関連コーパスにタスク固有の事前学習を導入する。
この手順は、特定のタスクのモデル理解能力を高めるために、元の2つのステージの間に置かれる。
論文 参考訳(メタデータ) (2020-09-10T16:46:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。