論文の概要: Efficient Privacy-Preserving Machine Learning with Lightweight Trusted Hardware
- arxiv url: http://arxiv.org/abs/2210.10133v4
- Date: Mon, 17 Jun 2024 21:38:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-20 05:43:26.233554
- Title: Efficient Privacy-Preserving Machine Learning with Lightweight Trusted Hardware
- Title(参考訳): 軽量信頼ハードウェアを用いた高能率プライバシ保護機械学習
- Authors: Pengzhi Huang, Thang Hoang, Yueying Li, Elaine Shi, G. Edward Suh,
- Abstract要約: 本稿では,小規模な専用セキュリティプロセッサによるセキュアな機械学習推論プラットフォームを提案する。
我々は、最先端の分散プライバシ保存機械学習(PPML)プロトコルと比較して、大幅な性能向上を実現している。
我々の技術は、TEEにおけるセキュアメモリのサイズに制限されず、ResNet18やTransformerのような高容量な現代的なニューラルネットワークをサポートできます。
- 参考スコア(独自算出の注目度): 20.21755520998494
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this paper, we propose a new secure machine learning inference platform assisted by a small dedicated security processor, which will be easier to protect and deploy compared to today's TEEs integrated into high-performance processors. Our platform provides three main advantages over the state-of-the-art: (i) We achieve significant performance improvements compared to state-of-the-art distributed Privacy-Preserving Machine Learning (PPML) protocols, with only a small security processor that is comparable to a discrete security chip such as the Trusted Platform Module (TPM) or on-chip security subsystems in SoCs similar to the Apple enclave processor. In the semi-honest setting with WAN/GPU, our scheme is 4X-63X faster than Falcon (PoPETs'21) and AriaNN (PoPETs'22) and 3.8X-12X more communication efficient. We achieve even higher performance improvements in the malicious setting. (ii) Our platform guarantees security with abort against malicious adversaries under honest majority assumption. (iii) Our technique is not limited by the size of secure memory in a TEE and can support high-capacity modern neural networks like ResNet18 and Transformer. While previous work investigated the use of high-performance TEEs in PPML, this work represents the first to show that even tiny secure hardware with really limited performance can be leveraged to significantly speed-up distributed PPML protocols if the protocol can be carefully designed for lightweight trusted hardware.
- Abstract(参考訳): 本稿では,小型の専用セキュリティプロセッサによるセキュアな機械学習推論プラットフォームを提案する。このプラットフォームは,今日の高性能プロセッサに組み込まれたTEEと比較して,保護とデプロイが容易になる。
私たちのプラットフォームは、最先端の3つの大きな利点を提供します。
i) Apple Enclaveプロセッサに似たSoCのTrusted Platform Module(TPM)やオンチップセキュリティサブシステムのような個別のセキュリティチップに匹敵する小さなセキュリティプロセッサのみで,最先端の分散プライバシ保存機械学習(PPML)プロトコルと比較して,大幅なパフォーマンス向上を実現している。
WAN/GPUでは、Falcon (PoPETs'21) やAriaNN (PoPETs'22) よりも4X-63倍高速で、通信効率は3.8X-12倍である。
悪意のある設定でさらに高いパフォーマンス向上を実現しています。
(二)本プラットフォームは、本質的な過半数の前提のもと、悪意のある敵に対する攻撃を中止してセキュリティを保証する。
(iii)我々の技術は、TEEにおけるセキュアメモリのサイズに制限されず、ResNet18やTransformerのような高容量な現代のニューラルネットワークをサポートすることができる。
PPMLにおける高性能TEEの使用について以前の研究が検討されているが、この研究は、非常に限られた性能の小さなセキュアなハードウェアであっても、プロトコルが軽量なハードウェア向けに慎重に設計可能であれば、分散PPMLプロトコルの大幅な高速化に活用できることを初めて示すものである。
関連論文リスト
- The Communication-Friendly Privacy-Preserving Machine Learning against Malicious Adversaries [14.232901861974819]
プライバシー保護機械学習(PPML)は、機密情報を保護しながらセキュアなデータ分析を可能にする革新的なアプローチである。
セキュアな線形関数評価のための効率的なプロトコルを導入する。
我々は、このプロトコルを拡張して、線形層と非線形層を扱い、幅広い機械学習モデルとの互換性を確保する。
論文 参考訳(メタデータ) (2024-11-14T08:55:14Z) - Designing Short-Stage CDC-XPUFs: Balancing Reliability, Cost, and
Security in IoT Devices [2.28438857884398]
物理的に非閉塞関数(PUF)は、固有のハードウェアのバリエーションからユニークな暗号鍵を生成する。
Arbiter PUFs (APUFs) や XOR Arbiter PUFs (XOR-PUFs) のような従来のPUFは、機械学習(ML)や信頼性ベースの攻撃の影響を受けやすい。
本稿では,信頼性を高めるための事前選択戦略を取り入れたCDC-XPUF設計を提案し,新しい軽量アーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-09-26T14:50:20Z) - SLIP: Securing LLMs IP Using Weights Decomposition [0.0]
大規模言語モデル(LLM)は、最近、アカデミックと産業の両方で広く採用されている。
これらのモデルが成長するにつれて、彼らは価値ある知的財産権(IP)となり、所有者による巨額の投資を反映している。
エッジ上のモデルのIPを保護する現在の方法は、実用性、精度の低下、要求に対する適合性の制限がある。
我々は,エッジデデプロイされたモデルを盗難から保護するために,SLIPという新しいハイブリッド推論アルゴリズムを導入する。
論文 参考訳(メタデータ) (2024-07-15T16:37:55Z) - A Survey and Comparative Analysis of Security Properties of CAN Authentication Protocols [92.81385447582882]
コントロールエリアネットワーク(CAN)バスは車内通信を本質的に安全でないものにしている。
本稿では,CANバスにおける15の認証プロトコルをレビューし,比較する。
実装の容易性に寄与する本質的な運用基準に基づくプロトコルの評価を行う。
論文 参考訳(メタデータ) (2024-01-19T14:52:04Z) - HasTEE+ : Confidential Cloud Computing and Analytics with Haskell [50.994023665559496]
信頼性コンピューティングは、Trusted Execution Environments(TEEs)と呼ばれる特別なハードウェア隔離ユニットを使用して、コテナントクラウドデプロイメントにおける機密コードとデータの保護を可能にする。
低レベルのC/C++ベースのツールチェーンを提供するTEEは、固有のメモリ安全性の脆弱性の影響を受けやすく、明示的で暗黙的な情報フローのリークを監視するための言語構造が欠如している。
私たちは、Haskellに埋め込まれたドメイン固有言語(cla)であるHasTEE+を使って、上記の問題に対処します。
論文 参考訳(メタデータ) (2024-01-17T00:56:23Z) - Tamper-Evident Pairing [55.2480439325792]
Tamper-Evident Pairing (TEP)はPush-ButtonConfiguration (PBC)標準の改良である。
TEP は Tamper-Evident Announcement (TEA) に依存しており、相手が送信されたメッセージを検出せずに改ざんしたり、メッセージが送信された事実を隠蔽したりすることを保証している。
本稿では,その動作を理解するために必要なすべての情報を含む,TEPプロトコルの概要について概説する。
論文 参考訳(メタデータ) (2023-11-24T18:54:00Z) - Putting a Padlock on Lambda -- Integrating vTPMs into AWS Firecracker [49.1574468325115]
ソフトウェアサービスは、明確な信頼関係なしに、クラウドプロバイダに対して暗黙の信頼を置いている。
現在、Trusted Platform Module機能を公開するクラウドプロバイダは存在しない。
仮想TPMデバイスをAmazon Web Servicesによって開発されたFirecrackerに統合することで信頼性を向上させる。
論文 参考訳(メタデータ) (2023-10-05T13:13:55Z) - SOCI^+: An Enhanced Toolkit for Secure OutsourcedComputation on Integers [50.608828039206365]
本稿では,SOCIの性能を大幅に向上させるSOCI+を提案する。
SOCI+は、暗号プリミティブとして、高速な暗号化と復号化を備えた(2, 2)ホールドのPaillier暗号システムを採用している。
実験の結果,SOCI+は計算効率が最大5.4倍,通信オーバヘッドが40%少ないことがわかった。
論文 参考訳(メタデータ) (2023-09-27T05:19:32Z) - SyzTrust: State-aware Fuzzing on Trusted OS Designed for IoT Devices [67.65883495888258]
我々は、リソース制限されたTrusted OSのセキュリティを検証するための、最初の状態認識ファジィフレームワークであるSyzTrustを紹介する。
SyzTrustはハードウェア支援フレームワークを採用し、IoTデバイス上でTrusted OSを直接ファジングできるようにする。
我々は、Samsung、Tsinglink Cloud、Ali Cloudの3つの主要なベンダーからSyzTrust on Trusted OSを評価した。
論文 参考訳(メタデータ) (2023-09-26T08:11:38Z) - MPCLeague: Robust MPC Platform for Privacy-Preserving Machine Learning [5.203329540700177]
この論文は、2、3、4パーティで効率的なMPCフレームワークを設計することに焦点を当て、少なくとも1つの汚職とリング構造をサポートする。
それぞれのフレームワークに対して2つのバリエーションを提案し、一方は実行時間を最小化し、もう一方は金銭的コストに焦点を当てる。
論文 参考訳(メタデータ) (2021-12-26T09:25:32Z) - Perun: Secure Multi-Stakeholder Machine Learning Framework with GPU
Support [1.5362025549031049]
Perunは機密のマルチステークホルダ機械学習のためのフレームワークである。
ハードウェアアクセラレータ(GPUなど)上でMLトレーニングを実行し、セキュリティ保証を提供する。
CIFAR-10と現実世界の医療データセットのMLトレーニング中に、Perunは161倍から1560倍のスピードアップを達成した。
論文 参考訳(メタデータ) (2021-03-31T08:31:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。