論文の概要: An Early Experience with Confidential Computing Architecture for On-Device Model Protection
- arxiv url: http://arxiv.org/abs/2504.08508v1
- Date: Fri, 11 Apr 2025 13:21:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-14 14:17:22.274288
- Title: An Early Experience with Confidential Computing Architecture for On-Device Model Protection
- Title(参考訳): デバイス上でのモデル保護のための信頼計算アーキテクチャの初期経験
- Authors: Sina Abdollahi, Mohammad Maheri, Sandra Siby, Marios Kogias, Hamed Haddadi,
- Abstract要約: Arm Confidential Computing Architecture (CCA)は、オンデバイス機械学習(ML)のための新しいArm拡張である
本稿では,CCA内でのデプロイモデルの性能とプライバシのトレードオフを評価する。
本フレームワークは,相手の成功率の8.3%削減により,会員推測攻撃に対するモデル保護に成功している。
- 参考スコア(独自算出の注目度): 6.024889136631505
- License:
- Abstract: Deploying machine learning (ML) models on user devices can improve privacy (by keeping data local) and reduce inference latency. Trusted Execution Environments (TEEs) are a practical solution for protecting proprietary models, yet existing TEE solutions have architectural constraints that hinder on-device model deployment. Arm Confidential Computing Architecture (CCA), a new Arm extension, addresses several of these limitations and shows promise as a secure platform for on-device ML. In this paper, we evaluate the performance-privacy trade-offs of deploying models within CCA, highlighting its potential to enable confidential and efficient ML applications. Our evaluations show that CCA can achieve an overhead of, at most, 22% in running models of different sizes and applications, including image classification, voice recognition, and chat assistants. This performance overhead comes with privacy benefits; for example, our framework can successfully protect the model against membership inference attack by an 8.3% reduction in the adversary's success rate. To support further research and early adoption, we make our code and methodology publicly available.
- Abstract(参考訳): マシンラーニング(ML)モデルをユーザデバイスにデプロイすることで、(データをローカルに保持することで)プライバシを改善し、推論レイテンシを低減することができる。
Trusted Execution Environments(TEEs)はプロプライエタリなモデルを保護するための実用的なソリューションですが、既存のTEEソリューションは、デバイス上のモデルデプロイメントを妨げるアーキテクチャ上の制約があります。
新しいArm拡張であるArm Confidential Computing Architecture(CCA)は、これらの制限に対処し、オンデバイスMLのセキュアなプラットフォームとして約束されている。
本稿では,CCA内のモデル展開におけるパフォーマンスプライバシのトレードオフを評価し,機密かつ効率的なMLアプリケーションを実現する可能性を明らかにする。
評価の結果,CCAは画像分類,音声認識,チャットアシスタントなど,さまざまなサイズやアプリケーションの動作モデルにおいて,少なくとも22%のオーバヘッドを達成できることがわかった。
例えば、我々のフレームワークは、相手の成功率を8.3%削減することで、メンバシップ推論攻撃からモデルを保護することができます。
さらなる研究と早期採用を支援するため、コードと方法論を公開しています。
関連論文リスト
- TEESlice: Protecting Sensitive Neural Network Models in Trusted Execution Environments When Attackers have Pre-Trained Models [12.253529209143197]
TSDPは、TEE内のプライバシーに敏感な重みを保護し、GPUに不感な重みをオフロードする手法である。
トレーニング戦略の前に新たなパーティションを導入し,プライバシに敏感な重みをモデルの他のコンポーネントと効果的に分離する。
提案手法は, 計算コストを10倍に削減し, 完全なモデル保護を実現できることを示す。
論文 参考訳(メタデータ) (2024-11-15T04:52:11Z) - Position: On-Premises LLM Deployment Demands a Middle Path: Preserving Privacy Without Sacrificing Model Confidentiality [18.575663556525864]
ユーザ制御インフラストラクチャにクローズドソース LLM をデプロイすることで、データのプライバシが向上し、誤用リスクを軽減できる、と我々は主張する。
十分に設計されたオンプレミスデプロイメントでは、モデル盗難を防止することによって、モデルの機密性を保証し、プライバシ保護のカスタマイズを提供する必要がある。
私たちの調査結果は、プライバシと機密性が共存可能であることを示し、オンプレミスのAIデプロイメントをセキュアにする方法を確立しました。
論文 参考訳(メタデータ) (2024-10-15T02:00:36Z) - Privacy Backdoors: Enhancing Membership Inference through Poisoning Pre-trained Models [112.48136829374741]
本稿では、プライバシーバックドア攻撃という新たな脆弱性を明らかにします。
被害者がバックドアモデルに微調整を行った場合、トレーニングデータは通常のモデルに微調整された場合よりも大幅に高い速度でリークされる。
我々の発見は、機械学習コミュニティにおける重要なプライバシー上の懸念を浮き彫りにし、オープンソースの事前訓練モデルの使用における安全性プロトコルの再評価を求めている。
論文 参考訳(メタデータ) (2024-04-01T16:50:54Z) - GuaranTEE: Towards Attestable and Private ML with CCA [6.024889136631505]
GuaranTEEは、エッジ上で証明不可能なプライベート機械学習を提供するためのフレームワークである。
CCAがプロトタイプを開発し、評価し、公開することで、MLモデルをデプロイできる可能性を評価する。
論文 参考訳(メタデータ) (2024-03-29T23:07:29Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning(FL)は、分散機械学習モデルのトレーニング、データのプライバシの保護、通信コストの低減、多様化したデータソースによるモデルパフォーマンスの向上を支援する。
FLは、中毒攻撃、標的外のパフォーマンス劣化とターゲットのバックドア攻撃の両方でモデルの整合性を損なうような脆弱性に直面している。
我々は、複数の目的に同時に適応できる、強い適応的敵の概念を新たに定義する。
MESASは、実際のデータシナリオで有効であり、平均オーバーヘッドは24.37秒である。
論文 参考訳(メタデータ) (2023-06-06T11:44:42Z) - Self-Destructing Models: Increasing the Costs of Harmful Dual Uses of
Foundation Models [103.71308117592963]
本稿ではメタラーニングと逆学習の技法を活用した自己破壊モデルの学習アルゴリズムを提案する。
小規模な実験では、MLACは、BERTスタイルのモデルが性別識別を行うために再目的化されることをほとんど防ぐことができることを示す。
論文 参考訳(メタデータ) (2022-11-27T21:43:45Z) - Shielding Federated Learning Systems against Inference Attacks with ARM
TrustZone [0.0]
フェデレートラーニング(FL)は、マシンラーニングモデルをトレーニングする上で、個人データをユーザ環境に保持する新たな視点を開放する。
近年、個人データを勾配から流出させる推論攻撃の長いリストは、効果的な保護メカニズムの考案の必要性を強調している。
GradSecは、機械学習モデルのTEEのみに敏感なレイヤを保護できるソリューションです。
論文 参考訳(メタデータ) (2022-08-11T15:53:07Z) - RelaxLoss: Defending Membership Inference Attacks without Losing Utility [68.48117818874155]
より達成可能な学習目標を持つ緩和された損失に基づく新しい学習フレームワークを提案する。
RelaxLossは、簡単な実装と無視可能なオーバーヘッドのメリットを加えた任意の分類モデルに適用できる。
当社のアプローチはMIAに対するレジリエンスの観点から,常に最先端の防御機構より優れています。
論文 参考訳(メタデータ) (2022-07-12T19:34:47Z) - PRECAD: Privacy-Preserving and Robust Federated Learning via
Crypto-Aided Differential Privacy [14.678119872268198]
フェデレートラーニング(FL)は、複数の参加するクライアントがデータセットをローカルに保持し、モデル更新のみを交換することで、機械学習モデルを協調的にトレーニングすることを可能にする。
既存のFLプロトコルの設計は、データのプライバシやモデルの堅牢性を損なうような攻撃に対して脆弱であることが示されている。
我々はPreCADと呼ばれるフレームワークを開発し、同時に差分プライバシー(DP)を実現し、暗号の助けを借りてモデル中毒攻撃に対する堅牢性を高める。
論文 参考訳(メタデータ) (2021-10-22T04:08:42Z) - RoFL: Attestable Robustness for Secure Federated Learning [59.63865074749391]
フェデレートラーニング(Federated Learning)により、多数のクライアントが、プライベートデータを共有することなく、ジョイントモデルをトレーニングできる。
クライアントのアップデートの機密性を保証するため、フェデレートラーニングシステムはセキュアなアグリゲーションを採用している。
悪意のあるクライアントに対する堅牢性を向上させるセキュアなフェデレート学習システムであるRoFLを提案する。
論文 参考訳(メタデータ) (2021-07-07T15:42:49Z) - Federated Learning with Unreliable Clients: Performance Analysis and
Mechanism Design [76.29738151117583]
Federated Learning(FL)は、分散クライアント間で効果的な機械学習モデルをトレーニングするための有望なツールとなっている。
しかし、低品質のモデルは信頼性の低いクライアントによってアグリゲータサーバにアップロードすることができ、劣化やトレーニングの崩壊につながる。
クライアントの信頼できない振る舞いをモデル化し、このようなセキュリティリスクを軽減するための防御メカニズムを提案する。
論文 参考訳(メタデータ) (2021-05-10T08:02:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。