論文の概要: The Communication-Friendly Privacy-Preserving Machine Learning against Malicious Adversaries
- arxiv url: http://arxiv.org/abs/2411.09287v1
- Date: Thu, 14 Nov 2024 08:55:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-15 15:23:12.599208
- Title: The Communication-Friendly Privacy-Preserving Machine Learning against Malicious Adversaries
- Title(参考訳): 悪意のある相手に対するコミュニケーションフレンドリなプライバシ保護機械学習
- Authors: Tianpei Lu, Bingsheng Zhang, Lichun Li, Kui Ren,
- Abstract要約: プライバシー保護機械学習(PPML)は、機密情報を保護しながらセキュアなデータ分析を可能にする革新的なアプローチである。
セキュアな線形関数評価のための効率的なプロトコルを導入する。
我々は、このプロトコルを拡張して、線形層と非線形層を扱い、幅広い機械学習モデルとの互換性を確保する。
- 参考スコア(独自算出の注目度): 14.232901861974819
- License:
- Abstract: With the increasing emphasis on privacy regulations, such as GDPR, protecting individual privacy and ensuring compliance have become critical concerns for both individuals and organizations. Privacy-preserving machine learning (PPML) is an innovative approach that allows for secure data analysis while safeguarding sensitive information. It enables organizations to extract valuable insights from data without compromising privacy. Secure multi-party computation (MPC) is a key tool in PPML, as it allows multiple parties to jointly compute functions without revealing their private inputs, making it essential in multi-server environments. We address the performance overhead of existing maliciously secure protocols, particularly in finite rings like $\mathbb{Z}_{2^\ell}$, by introducing an efficient protocol for secure linear function evaluation. We implement our maliciously secure MPC protocol on GPUs, significantly improving its efficiency and scalability. We extend the protocol to handle linear and non-linear layers, ensuring compatibility with a wide range of machine-learning models. Finally, we comprehensively evaluate machine learning models by integrating our protocol into the workflow, enabling secure and efficient inference across simple and complex models, such as convolutional neural networks (CNNs).
- Abstract(参考訳): GDPRのようなプライバシ規制に重点が置かれているため、個人のプライバシ保護とコンプライアンスの確保が、個人と組織双方にとって重要な懸念となっている。
プライバシー保護機械学習(PPML)は、機密情報を保護しながらセキュアなデータ分析を可能にする革新的なアプローチである。
これにより、プライバシを損なうことなく、データから貴重な洞察を抽出できる。
セキュアなマルチパーティ計算(MPC)はPPMLの重要なツールであり、複数のパーティがプライベートな入力を公開せずに共同で関数を計算できるため、マルチサーバ環境では必須である。
特に$\mathbb{Z}_{2^\ell}$のような有限環において、線形関数をセキュアに評価するための効率的なプロトコルを導入することで、既存の悪質なセキュアなプロトコルの性能オーバーヘッドに対処する。
我々は悪質なセキュアなMPCプロトコルをGPUに実装し、その効率とスケーラビリティを大幅に改善した。
我々は、このプロトコルを拡張して、線形層と非線形層を扱い、幅広い機械学習モデルとの互換性を確保する。
最後に、我々のプロトコルをワークフローに統合することで機械学習モデルを総合的に評価し、畳み込みニューラルネットワーク(CNN)のような単純で複雑なモデルに対してセキュアで効率的な推論を可能にする。
関連論文リスト
- Pseudo-Probability Unlearning: Towards Efficient and Privacy-Preserving Machine Unlearning [59.29849532966454]
本稿では,PseudoProbability Unlearning (PPU)を提案する。
提案手法は,最先端の手法に比べて20%以上の誤りを忘れる改善を実現している。
論文 参考訳(メタデータ) (2024-11-04T21:27:06Z) - Collaborative Inference over Wireless Channels with Feature Differential Privacy [57.68286389879283]
複数の無線エッジデバイス間の協調推論は、人工知能(AI)アプリケーションを大幅に強化する可能性がある。
抽出された特徴を抽出することは、プロセス中に機密性の高い個人情報が暴露されるため、重大なプライバシーリスクをもたらす。
本稿では,ネットワーク内の各エッジデバイスが抽出された機能のプライバシを保護し,それらを中央サーバに送信して推論を行う,新たなプライバシ保存協調推論機構を提案する。
論文 参考訳(メタデータ) (2024-10-25T18:11:02Z) - A Pervasive, Efficient and Private Future: Realizing Privacy-Preserving Machine Learning Through Hybrid Homomorphic Encryption [2.434439232485276]
プライバシ保存機械学習(PPML)手法は、MLモデルのプライバシとセキュリティリスクを軽減するために提案されている。
これらの課題を克服するために、対称暗号とHEを組み合わせた現代の暗号方式が導入された。
本研究は,エッジデバイス向けのリソースフレンドリなPPMLプロトコルを提案することにより,HHEをML分野に導入する。
論文 参考訳(メタデータ) (2024-09-10T11:04:14Z) - Low-Latency Privacy-Preserving Deep Learning Design via Secure MPC [31.35072624488929]
セキュアなマルチパーティ計算(MPC)は、プライベート情報をリークすることなく、複数のパーティ間のプライバシ保護計算を容易にする。
本研究は、MPCプロトコルの実行中に不要な通信ラウンドを減らす、低レイテンシな秘密共有ベースのMPC設計を提案する。
論文 参考訳(メタデータ) (2024-07-24T07:01:21Z) - PriRoAgg: Achieving Robust Model Aggregation with Minimum Privacy Leakage for Federated Learning [49.916365792036636]
フェデレートラーニング(FL)は、大規模分散ユーザデータを活用する可能性から、最近大きな勢いを増している。
送信されたモデル更新は、センシティブなユーザ情報をリークする可能性があり、ローカルなトレーニングプロセスの集中的な制御の欠如は、モデル更新に対する悪意のある操作の影響を受けやすいグローバルモデルを残します。
我々は、Lagrange符号化計算と分散ゼロ知識証明を利用した汎用フレームワークPriRoAggを開発し、集約されたプライバシを満たすとともに、幅広いロバストな集約アルゴリズムを実行する。
論文 参考訳(メタデータ) (2024-07-12T03:18:08Z) - GuardML: Efficient Privacy-Preserving Machine Learning Services Through
Hybrid Homomorphic Encryption [2.611778281107039]
プライバシ保存機械学習(PPML)メソッドは、機械学習モデルのプライバシとセキュリティを保護するために導入された。
現代の暗号方式であるHybrid Homomorphic Encryption (HHE)が最近登場した。
心電図データに基づく心疾患の分類のためのHHEベースのPPMLアプリケーションの開発と評価を行った。
論文 参考訳(メタデータ) (2024-01-26T13:12:52Z) - Privacy Preserving Multi-Agent Reinforcement Learning in Supply Chains [5.436598805836688]
本稿では,サプライチェーンの文脈におけるマルチエージェント強化学習(MARL)のプライバシー問題に対処する。
本稿では,MARL設定におけるセキュアなマルチパーティ計算フレームワークを利用したゲーム理論,プライバシ関連機構を提案する。
プライバシ保護方式で浮動小数点演算を行う学習機構を提案する。
論文 参考訳(メタデータ) (2023-12-09T21:25:21Z) - Libertas: Privacy-Preserving Computation for Decentralised Personal Data Stores [19.54818218429241]
セキュアなマルチパーティ計算をSolidと統合するためのモジュール設計を提案する。
私たちのアーキテクチャであるLibertasでは、基盤となるSolidの設計にプロトコルレベルの変更は必要ありません。
既存の差分プライバシー技術と組み合わせて、出力プライバシーを確保する方法を示す。
論文 参考訳(メタデータ) (2023-09-28T12:07:40Z) - Theoretically Principled Federated Learning for Balancing Privacy and
Utility [61.03993520243198]
モデルパラメータを歪ませることでプライバシを保護する保護機構の一般学習フレームワークを提案する。
フェデレートされた学習における各コミュニケーションラウンドにおいて、各クライアント上の各モデルパラメータに対して、パーソナライズされたユーティリティプライバシトレードオフを実現することができる。
論文 参考訳(メタデータ) (2023-05-24T13:44:02Z) - Is Vertical Logistic Regression Privacy-Preserving? A Comprehensive
Privacy Analysis and Beyond [57.10914865054868]
垂直ロジスティック回帰(VLR)をミニバッチ降下勾配で訓練した。
我々は、オープンソースのフェデレーション学習フレームワークのクラスにおいて、VLRの包括的で厳密なプライバシー分析を提供する。
論文 参考訳(メタデータ) (2022-07-19T05:47:30Z) - CryptoSPN: Privacy-preserving Sum-Product Network Inference [84.88362774693914]
総生産ネットワーク(SPN)のプライバシ保護のためのフレームワークを提案する。
CryptoSPNは、中規模のSPNに対して秒の順序で高効率で正確な推論を行う。
論文 参考訳(メタデータ) (2020-02-03T14:49:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。