論文の概要: A new activation for neural networks and its approximation
- arxiv url: http://arxiv.org/abs/2210.10264v1
- Date: Wed, 19 Oct 2022 02:59:31 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-20 15:56:30.836898
- Title: A new activation for neural networks and its approximation
- Title(参考訳): ニューラルネットワークの新たな活性化とその近似
- Authors: Jianfei Li, Han Feng and Ding-Xuan Zhou
- Abstract要約: そこで我々は,DLUと呼ばれる新しいアクティベーション関数を提案し,その様々な滑らかさと構造を持つ関数に対する近似能力について検討する。
我々の理論的結果は、DLUネットワークが有理およびReLUネットワークで競合近似性能を処理できることを示し、いくつかの利点がある。
- 参考スコア(独自算出の注目度): 8.164433158925593
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning with deep neural networks (DNNs) has attracted tremendous
attention from various fields of science and technology recently. Activation
functions for a DNN define the output of a neuron given an input or set of
inputs. They are essential and inevitable in learning non-linear
transformations and performing diverse computations among successive neuron
layers. Thus, the design of activation functions is still an important topic in
deep learning research. Meanwhile, theoretical studies on the approximation
ability of DNNs with activation functions have been investigated within the
last few years. In this paper, we propose a new activation function, named as
"DLU", and investigate its approximation ability for functions with various
smoothness and structures. Our theoretical results show that DLU networks can
process competitive approximation performance with rational and ReLU networks,
and have some advantages. Numerical experiments are conducted comparing DLU
with the existing activations-ReLU, Leaky ReLU, and ELU, which illustrate the
good practical performance of DLU.
- Abstract(参考訳): 深層ニューラルネットワーク(dnn)を用いたディープラーニングは、近年、さまざまな科学や技術分野から注目を集めている。
DNNの活性化関数は入力または入力セットが与えられたニューロンの出力を定義する。
これらは非線形変換を学習し、連続するニューロン層間で様々な計算を行う上で必須かつ必然的である。
したがって、アクティベーション関数の設計は、ディープラーニング研究において依然として重要なトピックである。
一方,近年,活性化機能を有するdnnの近似能力に関する理論的研究が進められている。
本稿では「DLU」と呼ばれる新しいアクティベーション関数を提案し,その様々な滑らかさと構造を持つ関数に対する近似能力について検討する。
我々の理論的結果は、DLUネットワークが有理およびReLUネットワークで競合近似性能を処理できることを示し、いくつかの利点がある。
DLUと既存のアクティベーションであるReLU、Leaky ReLU、ELUを比較し、DLUの実用的な性能を示す数値実験を行った。
関連論文リスト
- Exploiting Heterogeneity in Timescales for Sparse Recurrent Spiking Neural Networks for Energy-Efficient Edge Computing [16.60622265961373]
スパイキングニューラルネットワーク(SNN)は、ニューロモルフィックコンピューティングの最前線である。
本稿では,SNNのパフォーマンスに革命をもたらす3つの画期的な研究をまとめる。
論文 参考訳(メタデータ) (2024-07-08T23:33:12Z) - Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
人工ニューラルネットワーク(ANN)の強化のための生物学的インフォームドフレームワークを提案する。
提案したデュアルフレームアプローチは、多様なスパイキング動作をエミュレートするためのスパイキングニューラルネットワーク(SNN)の可能性を強調している。
提案手法は脳にインスパイアされたコンパートメントモデルとタスク駆動型SNN, バイオインスピレーション, 複雑性を統合している。
論文 参考訳(メタデータ) (2024-07-05T14:11:28Z) - Sign Gradient Descent-based Neuronal Dynamics: ANN-to-SNN Conversion Beyond ReLU Network [10.760652747217668]
スパイキングニューラルネットワーク(SNN)は、神経科学のメカニズムをシミュレートするために、多分野の領域で研究されている。
離散理論の欠如は、その性能と非線形性のサポートを制限することによって、SNNの実用化を妨げている。
我々は、スパイキングニューロンの離散力学の新しい最適化理論的視点を示す。
論文 参考訳(メタデータ) (2024-07-01T02:09:20Z) - ReLUs Are Sufficient for Learning Implicit Neural Representations [17.786058035763254]
暗黙的神経表現学習におけるReLUアクティベーション関数の使用について再考する。
2次B-スプラインウェーブレットにインスパイアされ、ディープニューラルネットワーク(DNN)の各層にReLUニューロンに一連の簡単な制約を組み込む。
我々は、一般的な信念とは対照的に、ReLUニューロンのみからなるDNNに基づいて最先端のINRを学習できることを実証した。
論文 参考訳(メタデータ) (2024-06-04T17:51:08Z) - Topological Representations of Heterogeneous Learning Dynamics of Recurrent Spiking Neural Networks [16.60622265961373]
スパイキングニューラルネットワーク(SNN)は神経科学と人工知能において重要なパラダイムとなっている。
近年,深層ニューラルネットワークのネットワーク表現について研究が進められている。
論文 参考訳(メタデータ) (2024-03-19T05:37:26Z) - Graph Neural Networks Provably Benefit from Structural Information: A
Feature Learning Perspective [53.999128831324576]
グラフニューラルネットワーク(GNN)は、グラフ表現学習の先駆けとなった。
本研究では,特徴学習理論の文脈におけるグラフ畳み込みの役割について検討する。
論文 参考訳(メタデータ) (2023-06-24T10:21:11Z) - Linear Leaky-Integrate-and-Fire Neuron Model Based Spiking Neural
Networks and Its Mapping Relationship to Deep Neural Networks [7.840247953745616]
スパイキングニューラルネットワーク(SNN)は、生物学的可視性や教師なし学習能力など、脳にインスパイアされた機械学習アルゴリズムである。
本稿では,リニアリーキー・インテグレート・アンド・ファイア・モデル(LIF/SNN)の生物学的パラメータとReLU-AN/Deep Neural Networks(DNN)のパラメータとの正確な数学的マッピングを確立する。
論文 参考訳(メタデータ) (2022-05-31T17:02:26Z) - Neuroevolution of a Recurrent Neural Network for Spatial and Working
Memory in a Simulated Robotic Environment [57.91534223695695]
我々は,ラットで観察される行動と神経活動を再現する進化的アルゴリズムを用いて,生物学的に有意なリカレントニューラルネットワーク(RNN)でウェイトを進化させた。
提案手法は, 進化したRNNの動的活動が, 興味深く複雑な認知行動をどのように捉えているかを示す。
論文 参考訳(メタデータ) (2021-02-25T02:13:52Z) - How Neural Networks Extrapolate: From Feedforward to Graph Neural
Networks [80.55378250013496]
勾配勾配降下法によりトレーニングされたニューラルネットワークが、トレーニング分布の支持の外で学んだことを外挿する方法について検討する。
グラフニューラルネットワーク(GNN)は、より複雑なタスクでいくつかの成功を収めている。
論文 参考訳(メタデータ) (2020-09-24T17:48:59Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z) - Non-linear Neurons with Human-like Apical Dendrite Activations [81.18416067005538]
XOR論理関数を100%精度で学習し, 標準的なニューロンに後続のアピーカルデンドライト活性化(ADA)が認められた。
コンピュータビジョン,信号処理,自然言語処理の6つのベンチマークデータセットについて実験を行った。
論文 参考訳(メタデータ) (2020-02-02T21:09:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。