論文の概要: Channel-wise Parallelizable Spiking Neuron with Multiplication-free Dynamics and Large Temporal Receptive Fields
- arxiv url: http://arxiv.org/abs/2501.14490v1
- Date: Fri, 24 Jan 2025 13:44:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-27 14:58:03.456109
- Title: Channel-wise Parallelizable Spiking Neuron with Multiplication-free Dynamics and Large Temporal Receptive Fields
- Title(参考訳): チャネルワイド並列化可能スパイキングニューロンの乗算自由度と時間受容野の大型化
- Authors: Peng Xue, Wei Fang, Zhengyu Ma, Zihan Huang, Zhaokun Zhou, Yonghong Tian, Timothée Masquelier, Huihui Zhou,
- Abstract要約: スパイキングニューラルネットワーク(SNN)は、生物学的ニューラルネットワークにインスパイアされた洗練された神経力学とスパースバイナリアクティベーション(スパイクス)によって、ニューラルネットワーク(ANN)と区別される。
従来のニューロンモデルは反復的なステップバイステップのダイナミクスを使用し、シリアル計算とSNNの遅いトレーニング速度をもたらす。
最近の並列化可能なスパイクニューロンモデルは、SNNの訓練を加速するために、グラフィックス処理ユニットの大規模並列計算能力をフル活用するために提案されている。
- 参考スコア(独自算出の注目度): 32.349167886062105
- License:
- Abstract: Spiking Neural Networks (SNNs) are distinguished from Artificial Neural Networks (ANNs) for their sophisticated neuronal dynamics and sparse binary activations (spikes) inspired by the biological neural system. Traditional neuron models use iterative step-by-step dynamics, resulting in serial computation and slow training speed of SNNs. Recently, parallelizable spiking neuron models have been proposed to fully utilize the massive parallel computing ability of graphics processing units to accelerate the training of SNNs. However, existing parallelizable spiking neuron models involve dense floating operations and can only achieve high long-term dependencies learning ability with a large order at the cost of huge computational and memory costs. To solve the dilemma of performance and costs, we propose the mul-free channel-wise Parallel Spiking Neuron, which is hardware-friendly and suitable for SNNs' resource-restricted application scenarios. The proposed neuron imports the channel-wise convolution to enhance the learning ability, induces the sawtooth dilations to reduce the neuron order, and employs the bit shift operation to avoid multiplications. The algorithm for design and implementation of acceleration methods is discussed meticulously. Our methods are validated in neuromorphic Spiking Heidelberg Digits voices, sequential CIFAR images, and neuromorphic DVS-Lip vision datasets, achieving the best accuracy among SNNs. Training speed results demonstrate the effectiveness of our acceleration methods, providing a practical reference for future research.
- Abstract(参考訳): スパイキングニューラルネットワーク(SNN)は、生物学的ニューラルネットワークにインスパイアされた洗練された神経力学とスパースバイナリアクティベーション(スパイクス)によって、ニューラルネットワーク(ANN)と区別される。
従来のニューロンモデルは反復的なステップバイステップのダイナミクスを使用し、シリアル計算とSNNの遅いトレーニング速度をもたらす。
近年,SNNの訓練を高速化するために,グラフィックス処理ユニットの大規模並列計算能力をフル活用するために並列化可能なスパイクニューロンモデルが提案されている。
しかし、既存の並列化可能なスパイクニューロンモデルでは、高密度な浮動小数点演算を伴い、大量の計算とメモリコストを犠牲にして、高い長期依存学習能力しか達成できない。
性能とコストのジレンマを解決するため,SNNのリソース制限型アプリケーションシナリオに適したハードウェアフレンドリーなマルチフリーチャネルワイズ並列スパイクニューロンを提案する。
提案したニューロンは、学習能力を高めるためにチャネルワイズ・コンボリューションをインポートし、ソートゥース・ディレーションを誘導してニューロンの順序を減少させ、乗算を避けるためにビットシフト操作を用いる。
加速法の設計と実装のアルゴリズムを慎重に議論する。
提案手法は,ニューロモルフィックなハイデルベルク・ディジット音声,シーケンシャルなCIFAR画像,ニューロモルフィックなDVS-Lip視覚データセットで検証され,SNNで最高の精度を実現している。
トレーニング速度の結果は,加速法の有効性を実証し,今後の研究の実践的参考となる。
関連論文リスト
- Time-independent Spiking Neuron via Membrane Potential Estimation for Efficient Spiking Neural Networks [4.142699381024752]
スパイキングニューラルネットワーク(SNN)の計算的非効率性は、主に膜電位の逐次更新によるものである。
スパイキングニューロンの並列計算法である膜電位推定並列スパイキングニューロン(MPE-PSN)を提案する。
提案手法では,特に高次ニューロン密度条件下での計算効率の向上が期待できる。
論文 参考訳(メタデータ) (2024-09-08T05:14:22Z) - Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
人工ニューラルネットワーク(ANN)の強化のための生物学的インフォームドフレームワークを提案する。
提案したデュアルフレームアプローチは、多様なスパイキング動作をエミュレートするためのスパイキングニューラルネットワーク(SNN)の可能性を強調している。
提案手法は脳にインスパイアされたコンパートメントモデルとタスク駆動型SNN, バイオインスピレーション, 複雑性を統合している。
論文 参考訳(メタデータ) (2024-07-05T14:11:28Z) - SpikingJelly: An open-source machine learning infrastructure platform
for spike-based intelligence [51.6943465041708]
スパイキングニューラルネットワーク(SNN)は、高エネルギー効率のニューロモルフィックチップに脳にインスパイアされたインテリジェンスを実現することを目的としている。
我々は、ニューロモルフィックデータセットの事前処理、深層SNNの構築、パラメータの最適化、およびニューロモルフィックチップへのSNNのデプロイのためのフルスタックツールキットをコントリビュートする。
論文 参考訳(メタデータ) (2023-10-25T13:15:17Z) - Accelerating SNN Training with Stochastic Parallelizable Spiking Neurons [1.7056768055368383]
スパイキングニューラルネットワーク(SNN)は、特にニューロモルフィックハードウェアにおいて、少ないエネルギーを使用しながら特徴を学習することができる。
深層学習において最も広く用いられるニューロンは、時間と火災(LIF)ニューロンである。
論文 参考訳(メタデータ) (2023-06-22T04:25:27Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
脳にインスパイアされたスパイクニューラルネットワーク(SNN)は、パターン認識タスクを解く上で有望な能力を示している。
これらのSNNは、情報表現に一様神経コーディングを利用する同質ニューロンに基づいている。
本研究では、SNNアーキテクチャは異種符号化方式を組み込むよう、均質に設計されるべきである、と論じる。
論文 参考訳(メタデータ) (2023-05-26T02:52:12Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
スパイキングニューラルネットワーク(SNN)は、エネルギー消費と遅延の観点から、桁違いに改善されている。
我々は、カスタムSNN PythonパッケージsnnTorchのIPU最適化リリースを提示する。
論文 参考訳(メタデータ) (2022-11-19T15:44:08Z) - Spiking Neural Networks with Improved Inherent Recurrence Dynamics for
Sequential Learning [6.417011237981518]
漏れた統合と発火(LIF)ニューロンを持つニューラルネットワーク(SNN)は、イベント駆動方式で操作できる。
我々は,SNNを逐次的なタスクのために訓練し,LIFニューロンのネットワークへの修正を提案する。
そこで我々は,提案するSNNのトレーニング手法を開発し,本質的な再帰ダイナミクスを改良した。
論文 参考訳(メタデータ) (2021-09-04T17:13:28Z) - Self-Supervised Learning of Event-Based Optical Flow with Spiking Neural
Networks [3.7384509727711923]
ニューロモルフィックコンピューティングの大きな課題は、従来の人工ニューラルネットワーク(ANN)の学習アルゴリズムがスパイクニューラルネットワーク(SNN)に直接転送されないことである。
本稿では,イベントベースカメラ入力からの光フロー推定における自己教師型学習問題に着目した。
提案するANNとSNNの性能は,自己教師型で訓練された現在の最先端のANNと同等であることを示す。
論文 参考訳(メタデータ) (2021-06-03T14:03:41Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z) - Effective and Efficient Computation with Multiple-timescale Spiking
Recurrent Neural Networks [0.9790524827475205]
本稿では,新しいタイプの適応スパイクリカレントニューラルネットワーク(SRNN)が,最先端の性能を実現する方法を示す。
我々は、従来のRNNよりも難しいタスクにおいて、SRNNの100倍のエネルギー改善を計算します。
論文 参考訳(メタデータ) (2020-05-24T01:04:53Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
スパイキングニューラルネットワーク(SNN)は、時間的スパイクパターンを用いて情報を表現し、伝達する。
本稿では,情報符号化,シナプス可塑性,意思決定におけるスパイクタイミングダイナミクスの寄与について検討し,将来のDeepSNNやニューロモルフィックハードウェアシステムの設計への新たな視点を提供する。
論文 参考訳(メタデータ) (2020-03-26T11:13:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。