論文の概要: Efficient Bi-Level Optimization for Recommendation Denoising
- arxiv url: http://arxiv.org/abs/2210.10321v2
- Date: Thu, 1 Jun 2023 15:32:39 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-03 01:21:17.155025
- Title: Efficient Bi-Level Optimization for Recommendation Denoising
- Title(参考訳): Recommendation Denoisingのための効率的なバイレベル最適化
- Authors: Zongwei Wang, Min Gao, Wentao Li, Junliang Yu, Linxin Guo, Hongzhi Yin
- Abstract要約: 暗黙のフィードバックは高いノイズを持ち、推奨品質を著しく損なう。
両レベルの最適化問題としてデノナイズをモデル化する。
内部最適化は、推奨のための効果的なモデルと重量決定を導くことを目的としている。
重み発生器を用いて重みの保存と1ステップの勾配マッチングに基づく損失を回避し、計算時間を著しく短縮する。
- 参考スコア(独自算出の注目度): 31.968068788022403
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The acquisition of explicit user feedback (e.g., ratings) in real-world
recommender systems is often hindered by the need for active user involvement.
To mitigate this issue, implicit feedback (e.g., clicks) generated during user
browsing is exploited as a viable substitute. However, implicit feedback
possesses a high degree of noise, which significantly undermines recommendation
quality. While many methods have been proposed to address this issue by
assigning varying weights to implicit feedback, two shortcomings persist: (1)
the weight calculation in these methods is iteration-independent, without
considering the influence of weights in previous iterations, and (2) the weight
calculation often relies on prior knowledge, which may not always be readily
available or universally applicable.
To overcome these two limitations, we model recommendation denoising as a
bi-level optimization problem. The inner optimization aims to derive an
effective model for the recommendation, as well as guiding the weight
determination, thereby eliminating the need for prior knowledge. The outer
optimization leverages gradients of the inner optimization and adjusts the
weights in a manner considering the impact of previous weights. To efficiently
solve this bi-level optimization problem, we employ a weight generator to avoid
the storage of weights and a one-step gradient-matching-based loss to
significantly reduce computational time. The experimental results on three
benchmark datasets demonstrate that our proposed approach outperforms both
state-of-the-art general and denoising recommendation models. The code is
available at https://github.com/CoderWZW/BOD.
- Abstract(参考訳): 現実世界のレコメンデーションシステムにおける明示的なユーザーフィードバック(例えば評価)の獲得は、アクティブなユーザー関与の必要性によってしばしば妨げられる。
この問題を緩和するために、ユーザブラウジング中に発生する暗黙のフィードバック(例えばクリック)は、実行可能な代用として利用される。
しかし、暗黙的なフィードバックは高いノイズを持ち、推薦品質を著しく損なう。
様々な重み付けを暗黙のフィードバックに割り当てることでこの問題に対処する多くの手法が提案されているが、(1)これらの方法における重み計算は、前回の反復における重みの影響を考慮せずに、イテレーション非依存であり、(2)重み計算は、しばしば事前の知識に依存している。
この2つの制約を克服するために,二段階最適化問題として推奨をモデル化した。
内的最適化は、推奨のための効果的なモデルと重量決定を導くことを目的としており、それによって事前の知識の必要性を排除している。
外的最適化は内的最適化の勾配を活用し、前回の重みの影響を考慮した方法で重みを調整する。
この二段階最適化問題を効率的に解くために,重み発生器を用いて重みの記憶と1段階の勾配マッチングに基づく損失を回避し,計算時間を著しく短縮する。
3つのベンチマークデータセットによる実験結果から,提案手法は最先端の一般モデルとデノーミングレコメンデーションモデルの両方より優れていることが示された。
コードはhttps://github.com/coderwzw/bodで入手できる。
関連論文リスト
- Learning Recommender Systems with Soft Target: A Decoupled Perspective [49.83787742587449]
そこで本研究では,ソフトラベルを活用することで,目的を2つの側面として捉えるために,分離されたソフトラベル最適化フレームワークを提案する。
本稿では,ラベル伝搬アルゴリズムをモデル化したソフトラベル生成アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-10-09T04:20:15Z) - ROPO: Robust Preference Optimization for Large Language Models [59.10763211091664]
外部モデルの助けを借りずにノイズ耐性とノイズサンプルのフィルタリングを統合する反復アライメント手法を提案する。
Mistral-7BとLlama-2-7Bで広く使われている3つのデータセットの実験では、ROPOが既存の嗜好アライメント法を大幅に上回っていることが示されている。
論文 参考訳(メタデータ) (2024-04-05T13:58:51Z) - Fast Optimization of Weighted Sparse Decision Trees for use in Optimal
Treatment Regimes and Optimal Policy Design [16.512942230284576]
本稿では,効率的な重み付き決定木最適化のための3つのアルゴリズムを提案する。
最初のアプローチでは、重み付き損失関数を直接最適化するが、大規模なデータセットでは計算的に非効率である傾向がある。
第二のアプローチは、より効率的にスケールし、重みを整数値に変換し、データ重複を使って重み付けされた決定木最適化問題を非重み付き(より大きい)問題に変換する。
より大きなデータセットにスケールする第3のアルゴリズムは、各データポイントをその重みに比例した確率でサンプリングするランダム化された手順を使用する。
論文 参考訳(メタデータ) (2022-10-13T08:16:03Z) - SPR:Supervised Personalized Ranking Based on Prior Knowledge for
Recommendation [6.407166061614783]
本稿では,事前知識に基づくSPR(Supervised Personalized Ranking)という新しい損失関数を提案する。
BPRとは異なり、ユーザ、ポジティブ項目、ネガティブ項目を3倍にするのではなく、提案したSPRは、ユーザ、類似ユーザ、ポジティブ項目、ネガティブ項目を4倍に構成する。
論文 参考訳(メタデータ) (2022-07-07T10:00:54Z) - Breaking Feedback Loops in Recommender Systems with Causal Inference [99.22185950608838]
近年の研究では、フィードバックループが推奨品質を損なう可能性があり、ユーザの振る舞いを均質化している。
本稿では、因果推論を用いてフィードバックループを確実に破壊するアルゴリズムCAFLを提案する。
従来の補正手法と比較して,CAFLは推奨品質を向上することを示す。
論文 参考訳(メタデータ) (2022-07-04T17:58:39Z) - Bayesian Non-stationary Linear Bandits for Large-Scale Recommender
Systems [6.009759445555003]
この問題に対処するために,線形コンテキスト多重武装バンディットフレームワークを構築した。
本研究では,高次元特徴ベクトルを用いた線形帯域問題に対する意思決定ポリシーを開発する。
提案するリコメンデータシステムは,実行環境を最小化しながら,ユーザの項目嗜好をオンラインで学習する。
論文 参考訳(メタデータ) (2022-02-07T13:51:19Z) - Predict and Optimize: Through the Lens of Learning to Rank [9.434400627011108]
ノイズコントラスト推定は、ソリューションキャッシュのランク付けを学習する場合とみなすことができる。
また、最適化問題を解くことなく、閉じた形で区別できるペアワイズとリストワイズランキングの損失関数も開発する。
論文 参考訳(メタデータ) (2021-12-07T10:11:44Z) - STORM+: Fully Adaptive SGD with Momentum for Nonconvex Optimization [74.1615979057429]
本研究では,スムーズな損失関数に対する期待値である非バッチ最適化問題について検討する。
我々の研究は、学習率と運動量パラメータを適応的に設定する新しいアプローチとともに、STORMアルゴリズムの上に構築されている。
論文 参考訳(メタデータ) (2021-11-01T15:43:36Z) - A Generalised Inverse Reinforcement Learning Framework [24.316047317028147]
逆強化学習(英: inverse Reinforcement Learning、IRL)とは、観測された軌跡に基づいて、あるMDPベースの未知のコスト関数を推定することである。
我々は、(最大エントロピー)IRL問題の修正をもたらす将来の状態により多くの重みを与える代替の訓練損失を導入する。
私たちが考案したアルゴリズムは、複数のOpenAIジム環境において、既製のものよりも優れたパフォーマンス(および類似のトラクタビリティ)を示しました。
論文 参考訳(メタデータ) (2021-05-25T10:30:45Z) - Regret-Optimal Filtering [57.51328978669528]
後悔最適化レンズによる線形状態空間モデルにおけるフィルタの問題を検討する。
我々は, 透視推定器の誤差エネルギー推定における後悔の概念に基づいて, フィルタ設計のための新しい基準を定式化する。
3つのリッキー方程式と1つのリャプノフ方程式を解くことで、後悔と最適推定が容易に実現できることを示す。
論文 参考訳(メタデータ) (2021-01-25T19:06:52Z) - Robust Optimal Transport with Applications in Generative Modeling and
Domain Adaptation [120.69747175899421]
ワッサーシュタインのような最適輸送(OT)距離は、GANやドメイン適応のようないくつかの領域で使用されている。
本稿では,現代のディープラーニングアプリケーションに適用可能な,ロバストなOT最適化の計算効率のよい2つの形式を提案する。
提案手法では, ノイズの多いデータセット上で, 外部分布で劣化したGANモデルをトレーニングすることができる。
論文 参考訳(メタデータ) (2020-10-12T17:13:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。