論文の概要: Predict and Optimize: Through the Lens of Learning to Rank
- arxiv url: http://arxiv.org/abs/2112.03609v1
- Date: Tue, 7 Dec 2021 10:11:44 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-08 21:26:20.430872
- Title: Predict and Optimize: Through the Lens of Learning to Rank
- Title(参考訳): 予測と最適化: ランクへの学習のレンズを通して
- Authors: Jayanta Mandi, V\'ictor Bucarey, Maxime Mulamba, Tias Guns
- Abstract要約: ノイズコントラスト推定は、ソリューションキャッシュのランク付けを学習する場合とみなすことができる。
また、最適化問題を解くことなく、閉じた形で区別できるペアワイズとリストワイズランキングの損失関数も開発する。
- 参考スコア(独自算出の注目度): 9.434400627011108
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the last years predict-and-optimize approaches (Elmachtoub and Grigas
2021; Wilder, Dilkina, and Tambe 2019) have received increasing attention.
These problems have the settings where the predictions of predictive machine
learning (ML) models are fed to downstream optimization problems for decision
making. Predict-and-optimize approaches propose to train the ML models, often
neural network models, by directly optimizing the quality of decisions made by
the optimization solvers. However, one major bottleneck of predict-and-optimize
approaches is solving the optimization problem for each training instance at
every epoch. To address this challenge, Mulamba et al. (2021) propose noise
contrastive estimation by caching feasible solutions. In this work, we show the
noise contrastive estimation can be considered a case of learning to rank the
solution cache. We also develop pairwise and listwise ranking loss functions,
which can be differentiated in closed form without the need of solving the
optimization problem. By training with respect to these surrogate loss
function, we empirically show that we are able to minimize the regret of the
predictions.
- Abstract(参考訳): 過去数年間、予測と最適化のアプローチ(ElmachtoubとGrigas 2021、Willer、Dirkina、Tambe 2019)が注目されている。
これらの問題には、予測機械学習(ML)モデルの予測が、意思決定のための下流最適化問題に供給される設定がある。
予測最適化アプローチは、最適化ソルバによる意思決定の質を直接最適化することで、しばしばニューラルネットワークモデルであるmlモデルをトレーニングすることを提案する。
しかしながら、予測と最適化のアプローチの大きなボトルネックのひとつは、各エポック毎のトレーニングインスタンスの最適化問題を解決することだ。
この課題に対処するため、Mulamba et al. (2021) は、実現可能なソリューションをキャッシュすることで、ノイズコントラスト推定を提案する。
本研究は,ノイズコントラスト推定を,ソリューションキャッシュのランク付けを学習する場合とみなすことができることを示す。
また、最適化問題を解くことなく、閉じた形で区別できるペアワイズとリストワイズランキングの損失関数も開発する。
これらの代理損失関数に関するトレーニングにより、予測の後悔を最小限に抑えることができることを実証的に示す。
関連論文リスト
- Self-Supervised Learning of Iterative Solvers for Constrained Optimization [0.0]
制約付き最適化のための学習型反復解法を提案する。
解法を特定のパラメトリック最適化問題にカスタマイズすることで、非常に高速で正確な解を得ることができる。
最適性のKarush-Kuhn-Tucker条件に基づく新しい損失関数を導入し、両ニューラルネットワークの完全な自己教師付きトレーニングを可能にする。
論文 参考訳(メタデータ) (2024-09-12T14:17:23Z) - Learning Constrained Optimization with Deep Augmented Lagrangian Methods [54.22290715244502]
機械学習(ML)モデルは、制約付き最適化ソルバをエミュレートするために訓練される。
本稿では,MLモデルを用いて2つの解推定を直接予測する手法を提案する。
これにより、双対目的が損失関数であるエンドツーエンドのトレーニングスキームと、双対上昇法をエミュレートした原始的実現可能性への解推定を可能にする。
論文 参考訳(メタデータ) (2024-03-06T04:43:22Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
機械学習における予測-Then-Forecast(PtO)パラダイムは、下流の意思決定品質を最大化することを目的としている。
本稿では,PtO法を拡張して,OWA(Nondifferentiable Ordered Weighted Averaging)の目的を最適化する。
この結果から,不確実性の下でのOWA関数の最適化とパラメトリック予測を効果的に統合できることが示唆された。
論文 参考訳(メタデータ) (2024-02-12T16:33:35Z) - Decision-focused predictions via pessimistic bilevel optimization: a computational study [0.7499722271664147]
最適化パラメータの不確かさは、重要かつ長年にわたる課題である。
予測モデルを構築して,それを用いた意思決定の文言的指標を測定します。
トラクタビリティを実現するために,様々な計算手法を示す。
論文 参考訳(メタデータ) (2023-12-29T15:05:00Z) - Predict-Then-Optimize by Proxy: Learning Joint Models of Prediction and
Optimization [59.386153202037086]
Predict-Then-フレームワークは、機械学習モデルを使用して、最適化問題の未知のパラメータを、解決前の機能から予測する。
このアプローチは非効率であり、最適化ステップを通じてバックプロパゲーションのための手作りの、問題固有のルールを必要とする。
本稿では,予測モデルを用いて観測可能な特徴から最適解を直接学習する手法を提案する。
論文 参考訳(メタデータ) (2023-11-22T01:32:06Z) - Global Optimization: A Machine Learning Approach [7.052596485478637]
Bertsimas と Ozturk (2023) は、ブラックボックスのグローバル最適化問題を解決する方法として OCTHaGOn を提案した。
我々は、他のMIO表現可能なMLモデルを用いて、元の問題を近似することで、このアプローチの拡張を提供する。
多くの場合において、ソリューションの実現可能性と最適性の改善を示す。
論文 参考訳(メタデータ) (2023-11-03T06:33:38Z) - Divide and Learn: A Divide and Conquer Approach for Predict+Optimize [50.03608569227359]
予測+最適化問題は、予測係数を使用する最適化プロブレムと、確率係数の機械学習を組み合わせる。
本稿では, 予測係数を1次線形関数として, 最適化問題の損失を直接表現する方法を示す。
本稿では,この制約を伴わずに最適化問題に対処し,最適化損失を用いてその係数を予測する新しい分割アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-12-04T00:26:56Z) - Contrastive Losses and Solution Caching for Predict-and-Optimize [19.31153168397003]
ノイズコントラスト法を用いて、サロゲート損失関数の族を動機付ける。
すべての予測と最適化アプローチのボトルネックに対処する。
非常に遅い成長率でさえ、最先端の手法の質に合わせるのに十分であることを示す。
論文 参考訳(メタデータ) (2020-11-10T19:09:12Z) - Automatically Learning Compact Quality-aware Surrogates for Optimization
Problems [55.94450542785096]
未知パラメータで最適化問題を解くには、未知パラメータの値を予測し、これらの値を用いて問題を解くための予測モデルを学ぶ必要がある。
最近の研究によると、複雑なトレーニングモデルパイプラインのレイヤーとして最適化の問題を含めると、観測されていない意思決定の繰り返しを予測することになる。
我々は,大規模最適化問題の低次元サロゲートモデルを学習することにより,解の質を向上させることができることを示す。
論文 参考訳(メタデータ) (2020-06-18T19:11:54Z) - Global Optimization of Gaussian processes [52.77024349608834]
少数のデータポイントで学習したガウス過程を訓練した空間定式化を提案する。
このアプローチはまた、より小さく、計算的にもより安価なサブソルバを低いバウンディングに導く。
提案手法の順序の順序による時間収束を,総じて低減する。
論文 参考訳(メタデータ) (2020-05-21T20:59:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。