Decoding Polar Codes via Noisy Quantum Gates: Quantum Circuits and
Insights
- URL: http://arxiv.org/abs/2210.10854v1
- Date: Wed, 19 Oct 2022 19:29:00 GMT
- Title: Decoding Polar Codes via Noisy Quantum Gates: Quantum Circuits and
Insights
- Authors: Srikar Kasi, John Kaewell, Shahab Hamidi-Rad, Kyle Jamieson
- Abstract summary: This paper introduces QGateD-Polar, a novel Quantum Gate-based Maximum-Likelihood Decoder design for Polar error correction codes.
Our early results show that QGateD-Polar achieves the Maximum Likelihood performance in ideal quantum simulations.
- Score: 4.069144210024563
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The use of quantum computation for wireless network applications is emerging
as a promising paradigm to bridge the performance gap between in-practice and
optimal wireless algorithms. While today's quantum technology offers limited
number of qubits and low fidelity gates, application-based quantum solutions
help us to understand and improve the performance of such technology even
further. This paper introduces QGateD-Polar, a novel Quantum Gate-based
Maximum-Likelihood Decoder design for Polar error correction codes, which are
becoming widespread in today's 5G and tomorrow's NextG wireless networks.
QGateD-Polar uses quantum gates to dictate the time evolution of Polar code
decoding -- from the received wireless soft data to the final decoded solution
-- by leveraging quantum phenomena such as superposition, entanglement, and
interference, making it amenable to quantum gate-based computers. Our early
results show that QGateD-Polar achieves the Maximum Likelihood performance in
ideal quantum simulations, demonstrating how performance varies with noise.
Related papers
- QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - QuBEC: Boosting Equivalence Checking for Quantum Circuits with QEC
Embedding [4.15692939468851]
We propose a Decision Diagram-based quantum equivalence checking approach, QuBEC, that requires less latency compared to existing techniques.
Our proposed methodology reduces verification time on certain benchmark circuits by up to $271.49 times$.
arXiv Detail & Related papers (2023-09-19T16:12:37Z) - Hybrid Error-Management Strategies in Quantum Repeater Networks [0.7036032466145112]
We address the performance of a quantum network capable of quantum error correction and entanglement purification.
Results show that one should distribute Bell pairs as fast as possible while balancing the deployment of fidelity enhancement.
arXiv Detail & Related papers (2023-03-18T00:26:01Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Delegated variational quantum algorithms based on quantum homomorphic
encryption [69.50567607858659]
Variational quantum algorithms (VQAs) are one of the most promising candidates for achieving quantum advantages on quantum devices.
The private data of clients may be leaked to quantum servers in such a quantum cloud model.
A novel quantum homomorphic encryption (QHE) scheme is constructed for quantum servers to calculate encrypted data.
arXiv Detail & Related papers (2023-01-25T07:00:13Z) - Hybrid Gate-Pulse Model for Variational Quantum Algorithms [33.73469431747376]
Current quantum programs are mostly compiled on the gate-level, where quantum circuits are composed of quantum gates.
pulse-level optimization has gained more attention from researchers due to their advantages in terms of circuit duration.
We present a hybrid gate-pulse model that can mitigate these problems.
arXiv Detail & Related papers (2022-12-01T17:06:35Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - QuantumCircuitOpt: An Open-source Framework for Provably Optimal Quantum
Circuit Design [0.0]
We propose QuantumCircuitOpt, a novel open-source framework which implements mathematical optimization formulations and algorithms for decomposing arbitrary unitary gates into a sequence of hardware-native gates.
We show that QCOpt can find up to 57% reduction in the number of necessary gates on circuits with up to four qubits, and in run times less than a few minutes on commodity computing hardware.
We also show how the QCOpt package can be adapted to various built-in types of native gate sets, based on different hardware platforms like those produced by IBM, Rigetti and Google.
arXiv Detail & Related papers (2021-11-23T06:45:40Z) - Entangling Quantum Generative Adversarial Networks [53.25397072813582]
We propose a new type of architecture for quantum generative adversarial networks (entangling quantum GAN, EQ-GAN)
We show that EQ-GAN has additional robustness against coherent errors and demonstrate the effectiveness of EQ-GAN experimentally in a Google Sycamore superconducting quantum processor.
arXiv Detail & Related papers (2021-04-30T20:38:41Z) - Fault-tolerant Coding for Quantum Communication [71.206200318454]
encode and decode circuits to reliably send messages over many uses of a noisy channel.
For every quantum channel $T$ and every $eps>0$ there exists a threshold $p(epsilon,T)$ for the gate error probability below which rates larger than $C-epsilon$ are fault-tolerantly achievable.
Our results are relevant in communication over large distances, and also on-chip, where distant parts of a quantum computer might need to communicate under higher levels of noise.
arXiv Detail & Related papers (2020-09-15T15:10:50Z) - Quantum information processing with bosonic qubits in circuit QED [1.2891210250935146]
We review recent developments in the theory and implementation of quantum error correction with bosonic codes.
We report the progress made towards realizing fault-tolerant quantum information processing with cQED devices.
arXiv Detail & Related papers (2020-08-31T10:27:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.