Quantum Circuit Design for Decoded Quantum Interferometry
- URL: http://arxiv.org/abs/2504.18334v1
- Date: Fri, 25 Apr 2025 13:21:54 GMT
- Title: Quantum Circuit Design for Decoded Quantum Interferometry
- Authors: Natchapol Patamawisut, Naphan Benchasattabuse, Michal HajduĊĦek, Rodney Van Meter,
- Abstract summary: Decoded Quantum Interferometry (DQI) is a proposed quantum algorithm for approximating solutions to linear optimization problems.<n>A central challenge in realizing DQI is the design of a decoder that operates coherently on quantum superpositions.<n>We present a concrete quantum circuit implementation of DQI, with a focus on the decoding subroutine.
- Score: 0.44998333629984877
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Decoded Quantum Interferometry (DQI) is a recently proposed quantum algorithm for approximating solutions to combinatorial optimization problems by reducing instances of linear satisfiability to bounded-distance decoding over superpositions of quantum states. A central challenge in realizing DQI is the design of a decoder that operates coherently on quantum superpositions. In this work, we present a concrete quantum circuit implementation of DQI, with a focus on the decoding subroutine. Our design leverages a reversible Gauss-Jordan elimination circuit for the decoding stage. We analyze the circuit's depth and gate complexity and validate its performance through simulations on systems with up to 30 qubits. These results establish a concrete foundation for scalable implementations of DQI and open the door to future algorithmic refinements and hardware-level realizations.
Related papers
- Redesign Quantum Circuits on Quantum Hardware Device [6.627541720714792]
We present a new architecture which enables one to redesign large-scale quantum circuits on quantum hardware.
For concreteness, we apply this architecture to three crucial applications in circuit optimization, including the equivalence checking of (non-) parameterized circuits.
The feasibility of our approach is demonstrated by the excellent results of these applications, which are implemented both in classical computers and current NISQ hardware.
arXiv Detail & Related papers (2024-12-30T12:05:09Z) - Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Reinforcement learning-assisted quantum architecture search for variational quantum algorithms [0.0]
This thesis focuses on identifying functional quantum circuits in noisy quantum hardware.
We introduce a tensor-based quantum circuit encoding, restrictions on environment dynamics to explore the search space of possible circuits efficiently.
In dealing with various VQAs, our RL-based QAS outperforms existing QAS.
arXiv Detail & Related papers (2024-02-21T12:30:39Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Quantum Deep Dreaming: A Novel Approach for Quantum Circuit Design [0.0]
Quantum Deep Dreaming (QDD) is an algorithm that generates optimal quantum circuit architectures for specified objectives.
We demonstrate that QDD successfully generates, or 'dreams', circuits of six qubits close to ground state energy.
arXiv Detail & Related papers (2022-11-05T22:16:10Z) - Quantum circuit debugging and sensitivity analysis via local inversions [62.997667081978825]
We present a technique that pinpoints the sections of a quantum circuit that affect the circuit output the most.
We demonstrate the practicality and efficacy of the proposed technique by applying it to example algorithmic circuits implemented on IBM quantum machines.
arXiv Detail & Related papers (2022-04-12T19:39:31Z) - An Optimized Quantum Implementation of ISD on Scalable Quantum Resources [2.274915755738124]
We show that Prange's ISD algorithm can be implemented rather efficiently on a quantum computer.
We leverage the idea of classical co-processors to design hybrid classical-quantum trade-offs.
arXiv Detail & Related papers (2021-12-12T06:01:10Z) - Differentiable Quantum Architecture Search [15.045985536395479]
We propose a general framework of differentiable quantum architecture search (DQAS)
DQAS enables automated designs of quantum circuits in an end-to-end differentiable fashion.
arXiv Detail & Related papers (2020-10-16T18:00:03Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.