論文の概要: Standardized Medical Image Classification across Medical Disciplines
- arxiv url: http://arxiv.org/abs/2210.11091v1
- Date: Thu, 20 Oct 2022 08:38:31 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-21 14:24:57.672972
- Title: Standardized Medical Image Classification across Medical Disciplines
- Title(参考訳): 医療分野における標準化された医用画像分類
- Authors: Simone Mayer, Dominik M\"uller and Frank Kramer
- Abstract要約: AUCMEDIは、医療画像分類のためのPythonベースのフレームワークである。
本稿では,複数のデータセットに適用することで,AUCMEDIの能力を評価する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: AUCMEDI is a Python-based framework for medical image classification. In this
paper, we evaluate the capabilities of AUCMEDI, by applying it to multiple
datasets. Datasets were specifically chosen to cover a variety of medical
disciplines and imaging modalities. We designed a simple pipeline using Jupyter
notebooks and applied it to all datasets. Results show that AUCMEDI was able to
train a model with accurate classification capabilities for each dataset:
Averaged AUC per dataset range between 0.82 and 1.0, averaged F1 scores range
between 0.61 and 1.0. With its high adaptability and strong performance,
AUCMEDI proves to be a powerful instrument to build widely applicable neural
networks. The notebooks serve as application examples for AUCMEDI.
- Abstract(参考訳): aucmediはpythonベースの医療画像分類フレームワークである。
本稿では,複数のデータセットに適用することで,AUCMEDIの能力を評価する。
データセットは、さまざまな医療分野とイメージングモダリティをカバーするために特別に選択された。
Jupyterノートブックを使って簡単なパイプラインを設計し、すべてのデータセットに適用しました。
その結果、AUCMEDIはデータセット毎の平均AUCは0.82から1.0の範囲で、平均F1スコアは0.61から1.0の範囲で、各データセットの正確な分類能力を持つモデルをトレーニングすることができた。
高い適応性と強力な性能を持つAUCMEDIは、広く適用可能なニューラルネットワークを構築するための強力な手段であることが証明されている。
ノートブックはAUCMEDIの応用例として機能する。
関連論文リスト
- MedPix 2.0: A Comprehensive Multimodal Biomedical Dataset for Advanced AI Applications [0.0]
本稿では、データセットMedPix 2.0を構築するためのワークフロー全体について説明する。
データセットとともに、MongoDBインスタンスを効率的にナビゲートするためのGUIを開発しました。
また、分類タスクをスキャンするために、MedPix 2.0でトレーニングされたCLIPベースのモデルを提案する。
論文 参考訳(メタデータ) (2024-07-03T10:49:21Z) - UniCell: Universal Cell Nucleus Classification via Prompt Learning [76.11864242047074]
ユニバーサル細胞核分類フレームワーク(UniCell)を提案する。
異なるデータセットドメインから対応する病理画像のカテゴリを均一に予測するために、新しいプロンプト学習機構を採用している。
特に,本フレームワークでは,原子核検出と分類のためのエンドツーエンドアーキテクチャを採用し,フレキシブルな予測ヘッドを用いて様々なデータセットを適応する。
論文 参考訳(メタデータ) (2024-02-20T11:50:27Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
LVM-Medは、大規模医療データセットに基づいてトレーニングされた、最初のディープネットワークファミリーである。
55の公開データセットから約13万の医療画像を収集しました。
LVM-Medは、多くの最先端の教師付き、自己監督型、基礎モデルよりも経験的に優れている。
論文 参考訳(メタデータ) (2023-06-20T22:21:34Z) - Yet Another ICU Benchmark: A Flexible Multi-Center Framework for Clinical ML [0.7982607013768545]
Another ICU Benchmark (YAIB) は、再現性と同等の臨床ML実験を定義するためのモジュラーフレームワークである。
YAIBは、ほとんどのオープンアクセスICUデータセット(MIMIC III/IV、eICU、HiRID、AUMCdb)をサポートし、将来のICUデータセットに容易に適応できる。
データセットの選択,コホート定義,前処理が予測性能に大きな影響を及ぼすことを示す。
論文 参考訳(メタデータ) (2023-06-08T11:16:20Z) - medigan: A Python Library of Pretrained Generative Models for Enriched
Data Access in Medical Imaging [3.8568465270960264]
mediganは、オープンソースのフレームワークに依存しないPythonライブラリとして実装された、事前訓練された生成モデルのワンストップショップである。
研究者や開発者は、ほんの数行のコードでトレーニングデータを作成し、拡大し、ドメインに適応することができる。
ライブラリのスケーラビリティと設計は、統合され、容易に利用できる事前訓練された生成モデルの増加によって実証される。
論文 参考訳(メタデータ) (2022-09-28T23:45:33Z) - A Meta-embedding-based Ensemble Approach for ICD Coding Prediction [64.42386426730695]
国際疾病分類 (icd) は、世界中で臨床コーディングに使われているデファクトコードである。
これらのコードにより、医療提供者は償還を請求し、診断情報の効率的な保管と検索を容易にします。
提案手法は,日常的な医学データと科学論文の外部知識を用いて,効果的に単語ベクトルを訓練することにより,神経モデルの性能を高める。
論文 参考訳(メタデータ) (2021-02-26T17:49:58Z) - PyHealth: A Python Library for Health Predictive Models [53.848478115284195]
PyHealthは、医療データ上で様々な予測モデルを開発するためのオープンソースのPythonツールボックスである。
データ前処理モジュールにより、複雑なヘルスケアデータセットを機械学習フレンドリーなフォーマットに変換できます。
予測モデリングモジュールは、確立されたアンサンブルツリーとディープニューラルネットワークベースのアプローチを含む30以上の機械学習モデルを提供します。
論文 参考訳(メタデータ) (2021-01-11T22:02:08Z) - MedMNIST Classification Decathlon: A Lightweight AutoML Benchmark for
Medical Image Analysis [46.02653153307692]
MedMNIST(MedMNIST)は、医療用オープンデータセット10の集合体である。
MedMNISTは、軽量28x28画像の分類タスクを実行するために標準化されている。
MedMNISTは、医療画像解析において、教育目的、迅速なプロトタイピング、マルチモーダル機械学習、AutoMLに使用できる。
論文 参考訳(メタデータ) (2020-10-28T12:41:18Z) - ATSO: Asynchronous Teacher-Student Optimization for Semi-Supervised
Medical Image Segmentation [99.90263375737362]
教師-学生最適化の非同期版であるATSOを提案する。
ATSOはラベルのないデータを2つのサブセットに分割し、モデルの微調整に1つのサブセットを交互に使用し、他のサブセットのラベルを更新する。
医用画像のセグメンテーションデータセットを2つ評価し,様々な半教師付き環境において優れた性能を示す。
論文 参考訳(メタデータ) (2020-06-24T04:05:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。