Counterfactual MRI Data Augmentation using Conditional Denoising Diffusion Generative Models
- URL: http://arxiv.org/abs/2410.23835v1
- Date: Thu, 31 Oct 2024 11:29:41 GMT
- Title: Counterfactual MRI Data Augmentation using Conditional Denoising Diffusion Generative Models
- Authors: Pedro Morão, Joao Santinha, Yasna Forghani, Nuno Loução, Pedro Gouveia, Mario A. T. Figueiredo,
- Abstract summary: Deep learning models in medical imaging face challenges in generalizability and robustness due to variations in image acquisition parameters (IAP)
We introduce a novel method using conditional denoising diffusion generative models (cDDGMs) to generate counterfactual magnetic resonance (MR) images that simulate different IAP without altering patient anatomy.
- Score: 0.0
- License:
- Abstract: Deep learning (DL) models in medical imaging face challenges in generalizability and robustness due to variations in image acquisition parameters (IAP). In this work, we introduce a novel method using conditional denoising diffusion generative models (cDDGMs) to generate counterfactual magnetic resonance (MR) images that simulate different IAP without altering patient anatomy. We demonstrate that using these counterfactual images for data augmentation can improve segmentation accuracy, particularly in out-of-distribution settings, enhancing the overall generalizability and robustness of DL models across diverse imaging conditions. Our approach shows promise in addressing domain and covariate shifts in medical imaging. The code is publicly available at https: //github.com/pedromorao/Counterfactual-MRI-Data-Augmentation
Related papers
- Unifying Subsampling Pattern Variations for Compressed Sensing MRI with Neural Operators [72.79532467687427]
Compressed Sensing MRI reconstructs images of the body's internal anatomy from undersampled and compressed measurements.
Deep neural networks have shown great potential for reconstructing high-quality images from highly undersampled measurements.
We propose a unified model that is robust to different subsampling patterns and image resolutions in CS-MRI.
arXiv Detail & Related papers (2024-10-05T20:03:57Z) - Cross-conditioned Diffusion Model for Medical Image to Image Translation [22.020931436223204]
We introduce a Cross-conditioned Diffusion Model (CDM) for medical image-to-image translation.
First, we propose a Modality-specific Representation Model (MRM) to model the distribution of target modalities.
Then, we design a Modality-decoupled Diffusion Network (MDN) to efficiently and effectively learn the distribution from MRM.
arXiv Detail & Related papers (2024-09-13T02:48:56Z) - Similarity-aware Syncretic Latent Diffusion Model for Medical Image Translation with Representation Learning [15.234393268111845]
Non-contrast CT (NCCT) imaging may reduce image contrast and anatomical visibility, potentially increasing diagnostic uncertainty.
We propose a novel Syncretic generative model based on the latent diffusion model for medical image translation (S$2$LDM)
S$2$LDM enhances the similarity in distinct modal images via syncretic encoding and diffusing, promoting amalgamated information in the latent space and generating medical images with more details in contrast-enhanced regions.
arXiv Detail & Related papers (2024-06-20T03:54:41Z) - NeuroPictor: Refining fMRI-to-Image Reconstruction via Multi-individual Pretraining and Multi-level Modulation [55.51412454263856]
This paper proposes to directly modulate the generation process of diffusion models using fMRI signals.
By training with about 67,000 fMRI-image pairs from various individuals, our model enjoys superior fMRI-to-image decoding capacity.
arXiv Detail & Related papers (2024-03-27T02:42:52Z) - TC-DiffRecon: Texture coordination MRI reconstruction method based on
diffusion model and modified MF-UNet method [2.626378252978696]
We propose a novel diffusion model-based MRI reconstruction method, named TC-DiffRecon, which does not rely on a specific acceleration factor for training.
We also suggest the incorporation of the MF-UNet module, designed to enhance the quality of MRI images generated by the model.
arXiv Detail & Related papers (2024-02-17T13:09:00Z) - Steerable Conditional Diffusion for Out-of-Distribution Adaptation in Medical Image Reconstruction [75.91471250967703]
We introduce a novel sampling framework called Steerable Conditional Diffusion.
This framework adapts the diffusion model, concurrently with image reconstruction, based solely on the information provided by the available measurement.
We achieve substantial enhancements in out-of-distribution performance across diverse imaging modalities.
arXiv Detail & Related papers (2023-08-28T08:47:06Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
Deep Learning (DL) models have achieved state-of-the-art performance in diagnosing multiple diseases using reconstructed images as input.
DL models are sensitive to varying artifacts as it leads to changes in the input data distribution between the training and testing phases.
We propose to use other normalization techniques, such as Group Normalization and Layer Normalization, to inject robustness into model performance against varying image artifacts.
arXiv Detail & Related papers (2023-06-23T03:09:03Z) - Hierarchical Integration Diffusion Model for Realistic Image Deblurring [71.76410266003917]
Diffusion models (DMs) have been introduced in image deblurring and exhibited promising performance.
We propose the Hierarchical Integration Diffusion Model (HI-Diff), for realistic image deblurring.
Experiments on synthetic and real-world blur datasets demonstrate that our HI-Diff outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-05-22T12:18:20Z) - Multitask Brain Tumor Inpainting with Diffusion Models: A Methodological
Report [0.0]
Inpainting algorithms are a subset of DL generative models that can alter one or more regions of an input image.
The performance of these algorithms is frequently suboptimal due to their limited output variety.
Denoising diffusion probabilistic models (DDPMs) are a recently introduced family of generative networks that can generate results of comparable quality to GANs.
arXiv Detail & Related papers (2022-10-21T17:13:14Z) - Diffusion-Weighted Magnetic Resonance Brain Images Generation with
Generative Adversarial Networks and Variational Autoencoders: A Comparison
Study [55.78588835407174]
We show that high quality, diverse and realistic-looking diffusion-weighted magnetic resonance images can be synthesized using deep generative models.
We present two networks, the Introspective Variational Autoencoder and the Style-Based GAN, that qualify for data augmentation in the medical field.
arXiv Detail & Related papers (2020-06-24T18:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.