論文の概要: Discovering Differences in the Representation of People using
Contextualized Semantic Axes
- arxiv url: http://arxiv.org/abs/2210.12170v1
- Date: Fri, 21 Oct 2022 18:02:19 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-25 17:55:40.806617
- Title: Discovering Differences in the Representation of People using
Contextualized Semantic Axes
- Title(参考訳): 文脈的意味軸を用いた人物表現の差異の発見
- Authors: Li Lucy, Divya Tadimeti, David Bamman
- Abstract要約: 文脈化された意味軸を用いて、同じ単語のインスタンス間の差異を特徴付ける。
女性への言及や、女性を取り巻く文脈が、時間とともに明らかになりつつあることを示す。
- 参考スコア(独自算出の注目度): 5.972927416266617
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A common paradigm for identifying semantic differences across social and
temporal contexts is the use of static word embeddings and their distances. In
particular, past work has compared embeddings against "semantic axes" that
represent two opposing concepts. We extend this paradigm to BERT embeddings,
and construct contextualized axes that mitigate the pitfall where antonyms have
neighboring representations. We validate and demonstrate these axes on two
people-centric datasets: occupations from Wikipedia, and multi-platform
discussions in extremist, men's communities over fourteen years. In both
studies, contextualized semantic axes can characterize differences among
instances of the same word type. In the latter study, we show that references
to women and the contexts around them have become more detestable over time.
- Abstract(参考訳): 社会的文脈と時間的文脈にまたがる意味的差異を特定する一般的なパラダイムは、静的な単語埋め込みとその距離である。
特に、過去の研究は2つの反対の概念を表す「意味軸」に対する埋め込みを比較してきた。
このパラダイムをBERT埋め込みに拡張し、Antonymが隣接する表現を持つ落とし穴を緩和する文脈化された軸を構築する。
我々は、これらの軸を2つの人中心のデータセットで検証し、実証する。wikipediaからの職業と、14年以上の男性コミュニティであるextremistのマルチプラットフォームディスカッションである。
両方の研究において、文脈化された意味軸は、同じ単語型のインスタンス間の差異を特徴づけることができる。
後者では,女性への言及や周囲の文脈が時間の経過とともに明らかになりつつあることを示す。
関連論文リスト
- Conjuring Semantic Similarity [59.18714889874088]
2つのテキスト表現間の意味的類似性は、潜伏者の「意味」の間の距離を測定する
テキスト表現間の意味的類似性は、他の表現を言い換えるのではなく、それらが引き起こすイメージに基づいている、という新しいアプローチを提案する。
提案手法は,人間の注釈付きスコアに適合するだけでなく,テキスト条件付き生成モデル評価のための新たな道を開く意味的類似性に関する新たな視点を提供する。
論文 参考訳(メタデータ) (2024-10-21T18:51:34Z) - Distractors-Immune Representation Learning with Cross-modal Contrastive Regularization for Change Captioning [71.14084801851381]
変更キャプションは、類似した画像間のセマンティックな変化を簡潔に記述することを目的としている。
既存のほとんどの手法は、それらの違いを直接キャプチャし、エラーを起こしやすい特徴を得るリスクを負う。
本稿では,2つの画像表現の対応するチャネルを関連づけるイントラクタ免疫表現学習ネットワークを提案する。
論文 参考訳(メタデータ) (2024-07-16T13:00:33Z) - A Tale of Two Laws of Semantic Change: Predicting Synonym Changes with
Distributional Semantic Models [1.856334276134661]
歴史的言語文学には、同義語がどのように進化するかという2つの対立する、明らかに反対の仮説がある。
本稿では,各単語対に対する微分法則 (LD) と並列変化法則 (LPC) の相互関係を検出するための第一歩を踏み出した。
次に、分布意味論モデルを用いた問題に対する様々な計算手法を提案し、近年の語彙意味論的変化検出に関する文献にその基礎を置いている。
論文 参考訳(メタデータ) (2023-05-30T15:50:29Z) - Dialectograms: Machine Learning Differences between Discursive
Communities [0.0]
単語の埋め込みを利用して、単語の使い方を地図化することで、完全な埋め込み空間の豊かさを活用するための一歩を踏み出した。
そこで本研究では,単語の用法に違いがあり,頻繁な単語や多文語を抽出する既存手法の傾向を克服する新しい尺度を提案する。
論文 参考訳(メタデータ) (2023-02-11T11:32:08Z) - Keywords and Instances: A Hierarchical Contrastive Learning Framework
Unifying Hybrid Granularities for Text Generation [59.01297461453444]
入力テキスト中のハイブリッドな粒度意味を統一する階層的コントラスト学習機構を提案する。
実験により,本モデルがパラフレージング,対話生成,ストーリーテリングタスクにおいて,競争ベースラインより優れていることが示された。
論文 参考訳(メタデータ) (2022-05-26T13:26:03Z) - Compositional Temporal Grounding with Structured Variational Cross-Graph
Correspondence Learning [92.07643510310766]
ビデオの時間的接地は、あるクエリ文に意味的に対応する1つのターゲットビデオセグメントをローカライズすることを目的としている。
新たに構成時間グラウンドタスクを導入し,2つの新しいデータセット分割を構築した。
出現した単語の新たな組み合わせによるクエリの一般化に失敗したことを実証的に見出した。
本稿では,ビデオと言語を複数の階層構造に明示的に分解する多変分グラフ推論フレームワークを提案する。
論文 参考訳(メタデータ) (2022-03-24T12:55:23Z) - Exploring the Representation of Word Meanings in Context: A Case Study
on Homonymy and Synonymy [0.0]
我々は,静的モデルと文脈モデルの両方が,語彙-意味関係を適切に表現できる能力を評価する。
実験はガリシア語、ポルトガル語、英語、スペイン語で行われている。
論文 参考訳(メタデータ) (2021-06-25T10:54:23Z) - Frequency-based Distortions in Contextualized Word Embeddings [29.88883761339757]
本研究は,文脈化単語埋め込みの幾何学的特徴を2つの新しいツールを用いて探究する。
高頻度と低頻度の単語は、その表現幾何学に関して大きく異なる。
BERT-Baseは、北米やヨーロッパ諸国よりも南アメリカとアフリカ諸国の差別化が難しい。
論文 参考訳(メタデータ) (2021-04-17T06:35:48Z) - Fake it Till You Make it: Self-Supervised Semantic Shifts for
Monolingual Word Embedding Tasks [58.87961226278285]
語彙意味変化をモデル化するための自己教師付きアプローチを提案する。
本手法は,任意のアライメント法を用いて意味変化の検出に利用できることを示す。
3つの異なるデータセットに対する実験結果を用いて,本手法の有用性について述べる。
論文 参考訳(メタデータ) (2021-01-30T18:59:43Z) - Lexical semantic change for Ancient Greek and Latin [61.69697586178796]
歴史的文脈における単語の正しい意味の連想は、ダイアクロニック研究の中心的な課題である。
我々は、動的ベイズ混合モデルに基づくセマンティック変化に対する最近の計算的アプローチに基づいて構築する。
本研究では,動的ベイズ混合モデルと最先端埋め込みモデルとのセマンティックな変化を系統的に比較する。
論文 参考訳(メタデータ) (2021-01-22T12:04:08Z) - Cultural Cartography with Word Embeddings [0.0]
本稿では,単語の埋め込みが社会学における意味論とどのように一致しているかを示す。
まず、条件を一定に保ち、埋め込み空間が周囲をどう動くかを測定することができる。
第二に、埋め込み空間定数を保持して、ドキュメントや著者がそれに対してどのように動くかを確認することもできる。
論文 参考訳(メタデータ) (2020-07-09T01:58:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。