論文の概要: Transformations for accelerator-based quantum circuit simulation in
Haskell
- arxiv url: http://arxiv.org/abs/2210.12703v1
- Date: Sun, 23 Oct 2022 11:39:47 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-18 09:56:47.106339
- Title: Transformations for accelerator-based quantum circuit simulation in
Haskell
- Title(参考訳): Haskellにおけるアクセル型量子回路シミュレーションの変換
- Authors: Youssef Moawad, Wim Vanderbauwhede, Ren\'e Steijl
- Abstract要約: Haskellで実装された量子回路解析および変換法を作成するために,関数型プログラミング手法を用いる。
ハードウェアアクセラレーションの例として、選択した量子演算回路のFPGAに基づくシミュレーションについて論じる。
Haskellベースの分析および変換ツールの今後の開発手順を概説する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: For efficient hardware-accelerated simulations of quantum circuits, we can
define hardware-specific quantum-circuit transformations. We use a functional
programming approach to create a quantum-circuit analysis and transformation
method implemented in Haskell. This tool forms a key part of our larger
quantum-computing simulation toolchain. As an example of hardware acceleration,
we discuss FPGA-based simulations of selected quantum arithmetic circuits,
including the transformation steps to optimise the hardware utilisation. Future
development steps in the Haskell-based analysis and transformation tool are
outlined. The described toolchain can be found on GitHub:
https://github.com/DevdudeSami/fqt.
- Abstract(参考訳): 量子回路の効率的なハードウェア加速シミュレーションのために、ハードウェア固有の量子回路変換を定義することができる。
Haskellで実装された量子回路解析および変換法を作成するために,関数型プログラミング手法を用いる。
このツールは、より大きな量子計算シミュレーションツールチェーンの重要な部分を形成します。
ハードウェアアクセラレーションの例として、ハードウェア利用を最適化する変換ステップを含む、選択された量子算術回路のfpgaによるシミュレーションについて論じる。
Haskellベースの分析および変換ツールの今後の開発手順を概説する。
ツールチェーンはgithubにある。 https://github.com/devdudesami/fqt。
関連論文リスト
- Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
超伝導プロセッサのための強化学習型量子コンパイラを開発した。
短絡の新規・ハードウェア対応回路の発見能力を示す。
本研究は,効率的な量子コンパイルのためのハードウェアによるソフトウェア設計を実証する。
論文 参考訳(メタデータ) (2024-06-18T01:49:48Z) - Variational Quantum Continuous Optimization: a Cornerstone of Quantum
Mathematical Analysis [0.0]
量子コンピュータが連続領域を持つ関数の数学的解析計算をどのように扱えるかを示す。
提案手法の基本構成ブロックは変分量子回路であり、各量子ビットは最大3つの連続変数を符号化する。
この符号化と量子状態トモグラフィーを組み合わせることで、$n$ qubitsの変動量子回路は、最大3n$連続変数の関数を最適化することができる。
論文 参考訳(メタデータ) (2022-10-06T18:00:04Z) - Analysis of arbitrary superconducting quantum circuits accompanied by a
Python package: SQcircuit [0.0]
超伝導量子回路は、フォールトトレラント量子コンピュータを実現するための有望なハードウェアプラットフォームである。
超伝導量子回路の量子化ハミルトニアンを物理記述から構築する枠組みを開発する。
我々は,オープンソースのPythonパッケージであるSQcircuitで記述した手法を実装した。
論文 参考訳(メタデータ) (2022-06-16T17:24:51Z) - DisCoPy for the quantum computer scientist [0.0]
DisCoPyは文字列ダイアグラムと関手を使って計算するためのオープンソースのツールボックスである。
特に、ダイアグラムのデータ構造は、古典的なシミュレーションと最適化のための関手を用いて、様々な種類の量子プロセスを符号化することができる。
これには、ZX計算とその多くの変種、量子機械学習で使用されるパラメータ化回路、線形光量子コンピューティングも含まれる。
論文 参考訳(メタデータ) (2022-05-10T22:13:11Z) - Quantum Circuit Transformations with a Multi-Level Intermediate
Representation Compiler [1.5855260762884629]
本稿では、量子コンパイラに組み込まれたマルチレベル中間表現(MLIR)の新たな適応について述べる。
まず、MLIRが量子コンピューティングデバイス上での効率的な実行のために量子回路変換を実現する方法を示す。
コンパイル中に挿入されたミラー回路がハードウェア性能をテストできることを実証する。
論文 参考訳(メタデータ) (2021-12-20T16:59:27Z) - Fast quantum circuit simulation using hardware accelerated general
purpose libraries [69.43216268165402]
CuPyは、GPUベースの量子回路向けに開発された汎用ライブラリ(線形代数)である。
上位回路の場合、スピードアップは約2倍、量子乗算器の場合、最先端のC++ベースのシミュレータと比べて約22倍である。
論文 参考訳(メタデータ) (2021-06-26T10:41:43Z) - Tensor Network Quantum Virtual Machine for Simulating Quantum Circuits
at Exascale [57.84751206630535]
本稿では,E-scale ACCelerator(XACC)フレームワークにおける量子回路シミュレーションバックエンドとして機能する量子仮想マシン(TNQVM)の近代化版を提案する。
新バージョンは汎用的でスケーラブルなネットワーク処理ライブラリであるExaTNをベースにしており、複数の量子回路シミュレータを提供している。
ポータブルなXACC量子プロセッサとスケーラブルなExaTNバックエンドを組み合わせることで、ラップトップから将来のエクサスケールプラットフォームにスケール可能なエンドツーエンドの仮想開発環境を導入します。
論文 参考訳(メタデータ) (2021-04-21T13:26:42Z) - A MLIR Dialect for Quantum Assembly Languages [78.8942067357231]
量子コンピューティングにおけるMLIR(Multi-Level Intermediate Representation)の有用性を実証する。
我々は、共通量子集合言語の表現とコンパイルを可能にする新しい量子方言でMLIRを拡張した。
我々はQIR量子ランタイムAPIのqcor対応実装を活用して、再ターゲット可能な(量子ハードウェアに依存しない)コンパイラワークフローを実現する。
論文 参考訳(メタデータ) (2021-01-27T13:00:39Z) - Extending C++ for Heterogeneous Quantum-Classical Computing [56.782064931823015]
qcorはC++とコンパイラの実装の言語拡張で、異種量子古典プログラミング、コンパイル、単一ソースコンテキストでの実行を可能にする。
我々の研究は、量子言語で高レベルな量子カーネル(関数)を表現できる、第一種C++コンパイラを提供する。
論文 参考訳(メタデータ) (2020-10-08T12:49:07Z) - Machine Learning Optimization of Quantum Circuit Layouts [63.55764634492974]
本稿では量子回路マッピングQXXとその機械学習バージョンQXX-MLPを紹介する。
後者は、レイアウトされた回路の深さが小さくなるように最適なQXXパラメータ値を自動的に推論する。
近似を用いてレイアウト法を学習可能な経験的証拠を提示する。
論文 参考訳(メタデータ) (2020-07-29T05:26:19Z) - Bit-Slicing the Hilbert Space: Scaling Up Accurate Quantum Circuit
Simulation to a New Level [10.765480856320018]
我々は2次元の量子回路シミュレーション(精度と拡張性)を強化する。
実験により,本手法は様々な量子回路の最先端技術よりも優れていることが示された。
論文 参考訳(メタデータ) (2020-07-18T01:26:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。