Sample-efficient Multi-objective Molecular Optimization with GFlowNets
- URL: http://arxiv.org/abs/2302.04040v2
- Date: Thu, 2 Nov 2023 14:44:41 GMT
- Title: Sample-efficient Multi-objective Molecular Optimization with GFlowNets
- Authors: Yiheng Zhu, Jialu Wu, Chaowen Hu, Jiahuan Yan, Chang-Yu Hsieh, Tingjun
Hou, Jian Wu
- Abstract summary: We propose a multi-objective Bayesian optimization (MOBO) algorithm leveraging the hypernetwork-based GFlowNets (HN-GFN)
Using a single preference-conditioned hypernetwork, HN-GFN learns to explore various trade-offs between objectives.
Experiments in various real-world settings demonstrate that our framework predominantly outperforms existing methods in terms of candidate quality and sample efficiency.
- Score: 5.030493242666028
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many crucial scientific problems involve designing novel molecules with
desired properties, which can be formulated as a black-box optimization problem
over the discrete chemical space. In practice, multiple conflicting objectives
and costly evaluations (e.g., wet-lab experiments) make the diversity of
candidates paramount. Computational methods have achieved initial success but
still struggle with considering diversity in both objective and search space.
To fill this gap, we propose a multi-objective Bayesian optimization (MOBO)
algorithm leveraging the hypernetwork-based GFlowNets (HN-GFN) as an
acquisition function optimizer, with the purpose of sampling a diverse batch of
candidate molecular graphs from an approximate Pareto front. Using a single
preference-conditioned hypernetwork, HN-GFN learns to explore various
trade-offs between objectives. We further propose a hindsight-like off-policy
strategy to share high-performing molecules among different preferences in
order to speed up learning for HN-GFN. We empirically illustrate that HN-GFN
has adequate capacity to generalize over preferences. Moreover, experiments in
various real-world MOBO settings demonstrate that our framework predominantly
outperforms existing methods in terms of candidate quality and sample
efficiency. The code is available at https://github.com/violet-sto/HN-GFN.
Related papers
- Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
We introduce a novel theoretical framework for analyzing the effectiveness of DeepMatching Networks and Reinforcement Learning methods.
Our main contribution holds for a broad class of problems including Max-and Min-Cut, Max-$k$-Bipartite-Bi, Maximum-Weight-Bipartite-Bi, and Traveling Salesman Problem.
As a byproduct of our analysis we introduce a novel regularization process over vanilla descent and provide theoretical and experimental evidence that it helps address vanishing-gradient issues and escape bad stationary points.
arXiv Detail & Related papers (2023-10-08T23:39:38Z) - BOtied: Multi-objective Bayesian optimization with tied multivariate ranks [33.414682601242006]
In this paper, we show a natural connection between non-dominated solutions and the extreme quantile of the joint cumulative distribution function.
Motivated by this link, we propose the Pareto-compliant CDF indicator and the associated acquisition function, BOtied.
Our experiments on a variety of synthetic and real-world problems demonstrate that BOtied outperforms state-of-the-art MOBO acquisition functions.
arXiv Detail & Related papers (2023-06-01T04:50:06Z) - Let the Flows Tell: Solving Graph Combinatorial Optimization Problems
with GFlowNets [86.43523688236077]
Combinatorial optimization (CO) problems are often NP-hard and out of reach for exact algorithms.
GFlowNets have emerged as a powerful machinery to efficiently sample from composite unnormalized densities sequentially.
In this paper, we design Markov decision processes (MDPs) for different problems and propose to train conditional GFlowNets to sample from the solution space.
arXiv Detail & Related papers (2023-05-26T15:13:09Z) - Multi objective Fitness Dependent Optimizer Algorithm [19.535715565093764]
This paper proposes the multi objective variant of the recently introduced fitness dependent (FDO)
The algorithm is called a Multi objective Fitness Dependent (MOFDO) and is equipped with all five types of knowledge (situational, normative, topographical, domain, and historical knowledge) as in FDO.
It is observed that the proposed algorithm successfully provides a wide variety of well-distributed feasible solutions, which enable the decision-makers to have more applicable-comfort choices to consider.
arXiv Detail & Related papers (2023-01-26T06:33:53Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
We study the effectiveness of various ZO optimization methods for optimizing molecular objectives.
We show the advantages of ZO sign-based gradient descent (ZO-signGD)
We demonstrate the potential effectiveness of ZO optimization methods on widely used benchmark tasks from the Guacamol suite.
arXiv Detail & Related papers (2022-10-27T01:58:10Z) - Multi-Objective GFlowNets [59.16787189214784]
We study the problem of generating diverse candidates in the context of Multi-Objective Optimization.
In many applications of machine learning such as drug discovery and material design, the goal is to generate candidates which simultaneously optimize a set of potentially conflicting objectives.
We propose Multi-Objective GFlowNets (MOGFNs), a novel method for generating diverse optimal solutions, based on GFlowNets.
arXiv Detail & Related papers (2022-10-23T16:15:36Z) - Computer-Aided Multi-Objective Optimization in Small Molecule Discovery [3.032184156362992]
We describe pool-based and de novo generative approaches to multi-objective molecular discovery.
We show how pool-based molecular discovery is a relatively direct extension of multi-objective Bayesian optimization.
We discuss some remaining challenges and opportunities in the field.
arXiv Detail & Related papers (2022-10-13T17:33:07Z) - Result Diversification by Multi-objective Evolutionary Algorithms with
Theoretical Guarantees [94.72461292387146]
We propose to reformulate the result diversification problem as a bi-objective search problem, and solve it by a multi-objective evolutionary algorithm (EA)
We theoretically prove that the GSEMO can achieve the optimal-time approximation ratio, $1/2$.
When the objective function changes dynamically, the GSEMO can maintain this approximation ratio in running time, addressing the open question proposed by Borodin et al.
arXiv Detail & Related papers (2021-10-18T14:00:22Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z) - Multi-Fidelity Multi-Objective Bayesian Optimization: An Output Space
Entropy Search Approach [44.25245545568633]
We study the novel problem of blackbox optimization of multiple objectives via multi-fidelity function evaluations.
Our experiments on several synthetic and real-world benchmark problems show that MF-OSEMO, with both approximations, significantly improves over the state-of-the-art single-fidelity algorithms.
arXiv Detail & Related papers (2020-11-02T06:59:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.