論文の概要: Abstract Meaning Representation for Hospital Discharge Summarization
- arxiv url: http://arxiv.org/abs/2506.14101v1
- Date: Tue, 17 Jun 2025 01:33:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-18 17:34:59.284674
- Title: Abstract Meaning Representation for Hospital Discharge Summarization
- Title(参考訳): 病院放電要約における抽象的意味表現
- Authors: Paul Landes, Sitara Rao, Aaron Jeremy Chaise, Barbara Di Eugenio,
- Abstract要約: この研究は、言語に基づくグラフとディープラーニングモデルを組み合わせて、自動要約におけるコンテンツと信頼性の証明に対処する新しい方法を見つけることである。
Anonymous Hospitalの医師が作成したMIMIC-IIIコーパスと臨床ノートの信頼性について検討した。
- 参考スコア(独自算出の注目度): 0.8813014553043816
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Achilles heel of Large Language Models (LLMs) is hallucination, which has drastic consequences for the clinical domain. This is particularly important with regards to automatically generating discharge summaries (a lengthy medical document that summarizes a hospital in-patient visit). Automatically generating these summaries would free physicians to care for patients and reduce documentation burden. The goal of this work is to discover new methods that combine language-based graphs and deep learning models to address provenance of content and trustworthiness in automatic summarization. Our method shows impressive reliability results on the publicly available Medical Information Mart for Intensive III (MIMIC-III) corpus and clinical notes written by physicians at Anonymous Hospital. rovide our method, generated discharge ary output examples, source code and trained models.
- Abstract(参考訳): 大言語モデル(LLMs)のアキレス腱は幻覚であり、臨床領域に劇的な結果をもたらす。
特に退院サマリー(院内訪問を要約した長い医療文書)を自動生成することに関して重要である。
これらの要約を自動生成することで、医師は患者の世話をし、ドキュメントの負担を軽減できる。
本研究の目的は,言語に基づくグラフとディープラーニングモデルを組み合わせることで,自動要約におけるコンテンツと信頼性の証明に対処することである。
Anonymous Hospitalの医師が作成したMIMIC-IIIコーパスと臨床ノートの信頼性について検討した。
提案手法を承認し, 出力例, ソースコード, 訓練されたモデルを生成する。
関連論文リスト
- Self-Verification Improves Few-Shot Clinical Information Extraction [73.6905567014859]
大規模言語モデル (LLMs) は、数発のテキスト内学習を通じて臨床キュレーションを加速する可能性を示している。
正確性や解釈可能性に関する問題、特に健康のようなミッションクリティカルな領域ではまだ苦戦している。
本稿では,自己検証を用いた汎用的な緩和フレームワークについて検討する。このフレームワークはLLMを利用して,自己抽出のための証明を提供し,その出力をチェックする。
論文 参考訳(メタデータ) (2023-05-30T22:05:11Z) - Development and validation of a natural language processing algorithm to
pseudonymize documents in the context of a clinical data warehouse [53.797797404164946]
この研究は、この領域でツールやリソースを共有する際に直面する困難を浮き彫りにしている。
臨床文献のコーパスを12種類に分類した。
私たちは、ディープラーニングモデルと手動ルールの結果をマージして、ハイブリッドシステムを構築します。
論文 参考訳(メタデータ) (2023-03-23T17:17:46Z) - Discharge Summary Hospital Course Summarisation of In Patient Electronic
Health Record Text with Clinical Concept Guided Deep Pre-Trained Transformer
Models [1.1393603788068778]
ブリーフ病院コース(英: Brief Hospital Course、略称:BHC)は、病院全体の出会いの簡潔なサマリーであり、退院サマリーに埋め込まれている。
深層学習要約モデルの性能を実証するBHC要約法について述べる。
論文 参考訳(メタデータ) (2022-11-14T05:39:45Z) - Retrieval-Augmented and Knowledge-Grounded Language Models for Faithful Clinical Medicine [68.7814360102644]
本稿では,Re$3$Writer法を提案する。
本手法が患者の退院指示生成に有効であることを示す。
論文 参考訳(メタデータ) (2022-10-23T16:34:39Z) - Towards more patient friendly clinical notes through language models and
ontologies [57.51898902864543]
本稿では,単語の単純化と言語モデリングに基づく医療用テキストの自動作成手法を提案する。
我々は,公開医療文のデータセットペアと,臨床医による簡易化版を用いている。
本手法は,医学フォーラムデータに基づく言語モデルを用いて,文法と本来の意味の両方を保存しながら,より単純な文を生成する。
論文 参考訳(メタデータ) (2021-12-23T16:11:19Z) - Self-supervised Answer Retrieval on Clinical Notes [68.87777592015402]
本稿では,ドメイン固有パスマッチングのためのトランスフォーマー言語モデルをトレーニングするためのルールベースのセルフスーパービジョンであるCAPRを紹介する。
目的をトランスフォーマーベースの4つのアーキテクチャ、コンテキスト文書ベクトル、ビ-、ポリエンコーダ、クロスエンコーダに適用する。
本稿では,ドメイン固有パスの検索において,CAPRが強いベースラインを上回り,ルールベースおよび人間ラベル付きパスを効果的に一般化することを示す。
論文 参考訳(メタデータ) (2021-08-02T10:42:52Z) - CLIP: A Dataset for Extracting Action Items for Physicians from Hospital
Discharge Notes [17.107315598110183]
我々はMIMIC-III上に注釈付けされた臨床行動項目のデータセットを作成する。
このデータセットはCLIPと呼ばれ、医師によって注釈付けされ、1万の文章を表す文書をカバーしています。
本稿では,これらの文書からアクション項目を抽出するタスクを多アスペクト抽出要約として記述する。
論文 参考訳(メタデータ) (2021-06-04T14:49:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。