Deep-Learning-Based Precipitation Nowcasting with Ground Weather Station
Data and Radar Data
- URL: http://arxiv.org/abs/2210.12853v1
- Date: Thu, 20 Oct 2022 14:59:58 GMT
- Title: Deep-Learning-Based Precipitation Nowcasting with Ground Weather Station
Data and Radar Data
- Authors: Jihoon Ko, Kyuhan Lee, Hyunjin Hwang and Kijung Shin
- Abstract summary: We propose ASOC, a novel attentive method for effectively exploiting ground-based meteorological observations from multiple weather stations.
ASOC is designed to capture temporal dynamics of the observations and also contextual relationships between them.
We show that such a combination improves the average critical success index (CSI) of predicting heavy (at least 10 mm/hr) and light (at least 1 mm/hr) rainfall events at 1-6 hr lead times by 5.7%.
- Score: 14.672132394870445
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recently, many deep-learning techniques have been applied to various
weather-related prediction tasks, including precipitation nowcasting (i.e.,
predicting precipitation levels and locations in the near future). Most
existing deep-learning-based approaches for precipitation nowcasting, however,
consider only radar and/or satellite images as inputs, and meteorological
observations collected from ground weather stations, which are sparsely
located, are relatively unexplored. In this paper, we propose ASOC, a novel
attentive method for effectively exploiting ground-based meteorological
observations from multiple weather stations. ASOC is designed to capture
temporal dynamics of the observations and also contextual relationships between
them. ASOC is easily combined with existing image-based precipitation
nowcasting models without changing their architectures. We show that such a
combination improves the average critical success index (CSI) of predicting
heavy (at least 10 mm/hr) and light (at least 1 mm/hr) rainfall events at 1-6
hr lead times by 5.7%, compared to the original image-based model, using the
radar images and ground-based observations around South Korea collected from
2014 to 2020.
Related papers
- Generative Data Assimilation of Sparse Weather Station Observations at Kilometer Scales [5.453657018459705]
We demonstrate the viability of score-based data assimilation in the context of realistically complex km-scale weather.
By incorporating observations from 40 weather stations, 10% lower RMSEs on left-out stations are attained.
It is a ripe time to explore extensions that combine increasingly ambitious regional state generators with an increasing set of in situ, ground-based, and satellite remote sensing data streams.
arXiv Detail & Related papers (2024-06-19T10:28:11Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
We extend meteorological downscaling to arbitrary scattered station scales and establish a new benchmark and dataset.
Inspired by data assimilation techniques, we integrate observational data into the downscaling process, providing multi-scale observational priors.
Our proposed method outperforms other specially designed baseline models on multiple surface variables.
arXiv Detail & Related papers (2024-01-22T14:02:56Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
We develop a robust precipitation forecasting model that demonstrates resilience against spatial-temporal discrepancies.
Our approach has led to significant improvements in forecasting precision, culminating in our model securing textit1st place in the transfer learning leaderboard of the textitWeather4cast'23 competition.
arXiv Detail & Related papers (2023-11-30T08:22:08Z) - Transformer-based nowcasting of radar composites from satellite images
for severe weather [45.0983299269404]
We present a Transformer-based model for nowcasting ground-based radar image sequences using satellite data up to two hours lead time.
Trained on a dataset reflecting severe weather conditions, the model predicts radar fields occurring under different weather phenomena.
The model can support precipitation nowcasting across large domains without an explicit need for radar towers.
arXiv Detail & Related papers (2023-10-30T13:17:38Z) - Forecasting large-scale circulation regimes using deformable
convolutional neural networks and global spatiotemporal climate data [86.1450118623908]
We investigate a supervised machine learning approach based on deformable convolutional neural networks (deCNNs)
We forecast the North Atlantic-European weather regimes during extended boreal winter for 1 to 15 days into the future.
Due to its wider field of view, we also observe deCNN achieving considerably better performance than regular convolutional neural networks at lead times beyond 5-6 days.
arXiv Detail & Related papers (2022-02-10T11:37:00Z) - Deep Learning for Rain Fade Prediction in Satellite Communications [6.619650459583444]
Line of sight satellite systems, unmanned aerial vehicles, high-altitude platforms, and microwave links are extremely susceptible to rain.
Rain fade forecasting for these systems is critical because it allows the system to switch between ground gateways proactively before a rain fade event to maintain seamless service.
Deep learning architecture is proposed that forecasts future rain fade using satellite and radar imagery data as well as link power measurements.
arXiv Detail & Related papers (2021-10-02T00:43:02Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
Lidar-based object detectors are critical parts of the 3D perception pipeline in autonomous navigation systems such as self-driving cars.
They are sensitive to adverse weather conditions such as rain, snow and fog due to reduced signal-to-noise ratio (SNR) and signal-to-background ratio (SBR)
arXiv Detail & Related papers (2021-07-14T21:10:47Z) - Fusion of rain radar images and wind forecasts in a deep learning model
applied to rain nowcasting [0.0]
We train a deep learning model on a fusion of rainfall radar images and wind velocity produced by a weather forecast model.
Our network outperforms by 8% the F1-score calculated for the optical flow on moderate and higher rain events for forecasts at a horizon time of 30 min.
Merging rain and wind data has also proven to stabilize the training process and enabled significant improvement especially on the difficult-to-predict high precipitation rainfalls.
arXiv Detail & Related papers (2020-12-09T12:50:06Z) - SmaAt-UNet: Precipitation Nowcasting using a Small Attention-UNet
Architecture [5.28539620288341]
We show that it is possible to produce an accurate precipitation nowcast using a data-driven neural network approach.
We evaluate our approaches on a real-life datasets using precipitation maps from the region of the Netherlands and binary images of cloud coverage of France.
arXiv Detail & Related papers (2020-07-08T20:33:10Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
We use a conditional deep convolutional generative adversarial network to predict the geopotential height of the 500 hPa pressure level, the two-meter temperature and the total precipitation for the next 24 hours over Europe.
The proposed models are trained on 4 years of ERA5 reanalysis data from 2015-2018 with the goal to predict the associated meteorological fields in 2019.
arXiv Detail & Related papers (2020-06-13T20:53:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.