論文の概要: Heat Demand Forecasting with Multi-Resolutional Representation of
Heterogeneous Temporal Ensemble
- arxiv url: http://arxiv.org/abs/2210.13108v2
- Date: Mon, 17 Jul 2023 20:29:17 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-19 19:35:31.154009
- Title: Heat Demand Forecasting with Multi-Resolutional Representation of
Heterogeneous Temporal Ensemble
- Title(参考訳): 異種時間アンサンブルの多解表現による熱需要予測
- Authors: Adithya Ramachandran, Satyaki Chatterjee, Siming Bayer, Andreas Maier,
Thorkil Flensmark
- Abstract要約: ニューラルネットワークに基づく熱需要予測フレームワークを提案する。
熱負荷の予測にはCNNを用いる。
提案するフレームワークは、最先端のベースライン法よりも一貫して優れている。
- 参考スコア(独自算出の注目度): 6.748976209131109
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One of the primal challenges faced by utility companies is ensuring efficient
supply with minimal greenhouse gas emissions. The advent of smart meters and
smart grids provide an unprecedented advantage in realizing an optimised supply
of thermal energies through proactive techniques such as load forecasting. In
this paper, we propose a forecasting framework for heat demand based on neural
networks where the time series are encoded as scalograms equipped with the
capacity of embedding exogenous variables such as weather, and
holiday/non-holiday. Subsequently, CNNs are utilized to predict the heat load
multi-step ahead. Finally, the proposed framework is compared with other
state-of-the-art methods, such as SARIMAX and LSTM. The quantitative results
from retrospective experiments show that the proposed framework consistently
outperforms the state-of-the-art baseline method with real-world data acquired
from Denmark. A minimal mean error of 7.54% for MAPE and 417kW for RMSE is
achieved with the proposed framework in comparison to all other methods.
- Abstract(参考訳): 電力会社が直面する主要な課題の1つは、温室効果ガスの排出を最小限に抑えることである。
スマートメーターとスマートグリッドの出現は、負荷予測のような積極的な技術によって熱エネルギーの最適供給を実現する前例のない利点をもたらす。
本稿では,天気やホリデー/非ホリデーといった外因性変数を組み込む能力を備えたスカルグラムとして時系列を符号化したニューラルネットワークに基づく熱需要予測フレームワークを提案する。
その後、CNNを用いて、熱負荷のマルチステップ予測を行う。
最後に,提案手法をSARIMAXやLSTMといった最先端の手法と比較する。
振り返り実験による定量的結果は,提案フレームワークがデンマークから取得した実世界のデータを用いて,最先端のベースライン法を一貫して上回っていることを示している。
MAPEでは7.54%,RMSEでは417kWという最小誤差が,他の手法と比較して提案手法を用いて達成されている。
関連論文リスト
- Weather-Informed Probabilistic Forecasting and Scenario Generation in Power Systems [15.393565192962482]
再生可能エネルギー源の電力グリッドへの統合は、その本質性と不確実性のために大きな課題を呈している。
本稿では,高次元環境下での日頭予測と風のシナリオ生成のための確率予測とガウスコプラを組み合わせる手法を提案する。
論文 参考訳(メタデータ) (2024-09-11T21:44:59Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
気象予測において重要な課題であるダウンスケーリングは、ターゲット領域に対する高解像度気象状態の再構築を可能にする。
以前のダウンスケーリング手法には気象学のための調整された設計が欠けており、構造的な限界に遭遇した。
本稿では,多変数相関と地形情報の利用性を高める新しいモデルであるMambaDSを提案する。
論文 参考訳(メタデータ) (2024-08-20T13:45:49Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
気象学的ダウンスケーリングを任意の散乱ステーションスケールに拡張し、新しいベンチマークとデータセットを確立する。
データ同化技術にインスパイアされた我々は、観測データをダウンスケーリングプロセスに統合し、マルチスケールの観測先行情報を提供する。
提案手法は、複数の曲面変数上で、他の特別に設計されたベースラインモデルよりも優れている。
論文 参考訳(メタデータ) (2024-01-22T14:02:56Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
農業計画や保険には1年前から予測される高品質の干ばつが不可欠だ。
私たちは、体系的なエンドツーエンドアプローチを採用するエンドツーエンドアプローチを導入することで、干ばつデータに取り組みます。
主な発見は、TransformerモデルであるEarthFormerが、正確な短期(最大6ヶ月)の予測を行う際の例外的なパフォーマンスである。
論文 参考訳(メタデータ) (2023-09-12T13:28:06Z) - Contextualizing MLP-Mixers Spatiotemporally for Urban Data Forecast at Scale [54.15522908057831]
本稿では,STTD予測を大規模に行うためのコンピュータ・ミクサーの適応版を提案する。
我々の結果は、この単純な効率の良いソリューションが、いくつかのトラフィックベンチマークでテストした場合、SOTAベースラインに匹敵する可能性があることを驚くほど示している。
本研究は, 実世界のSTTD予測において, 簡便な有効モデルの探索に寄与する。
論文 参考訳(メタデータ) (2023-07-04T05:19:19Z) - Forecast reconciliation for vaccine supply chain optimization [61.13962963550403]
ワクチンサプライチェーン最適化は階層的な時系列予測の恩恵を受けることができる。
異なる階層レベルの予測は、上位レベルの予測が下位レベルの予測の総和と一致しないときに不整合となる。
我々は2010年から2021年にかけてのGSKの販売データを階層的時系列としてモデル化し,ワクチン販売予測問題に取り組む。
論文 参考訳(メタデータ) (2023-05-02T14:34:34Z) - Multivariate Empirical Mode Decomposition based Hybrid Model for
Day-ahead Peak Load Forecasting [0.0]
本研究では,多変量経験モード分解(MEMD)と支持ベクトル回帰(SVR)に基づく新しいハイブリッド予測モデルを提案する。
オーストラリアのニューサウスウェールズ州(NSW)とビクトリア州(VIC)の2つの実世界の負荷データセットは、提案されたMEMD-PSO-SVRハイブリッドモデルの優位性を検証していると考えられている。
論文 参考訳(メタデータ) (2021-10-28T09:42:37Z) - Smoothed Bernstein Online Aggregation for Day-Ahead Electricity Demand
Forecasting [0.0]
本稿では,日頭電力需要予測におけるIEEE DataPortコンペティションの勝利方法について述べる。
日頭負荷予測手法は、複数点予測モデルのオンライン予測組み合わせに基づいている。
このアプローチは柔軟で、新型コロナウイルス(COVID-19)のシャットダウンの前後で発生した新しいエネルギーシステムに迅速に適用することができる。
論文 参考訳(メタデータ) (2021-07-13T17:51:21Z) - A latent variable approach to heat load prediction in thermal grids [10.973034520723957]
この方法はスウェーデンのルリアにある1つの多層住宅に適用される。
結果は、人工ニューラルネットワークを用いた予測と比較される。
論文 参考訳(メタデータ) (2020-02-13T09:21:17Z) - Targeted free energy estimation via learned mappings [66.20146549150475]
自由エネルギー摂動 (FEP) は60年以上前にズワンツィヒによって自由エネルギー差を推定する方法として提案された。
FEPは、分布間の十分な重複の必要性という厳しい制限に悩まされている。
目標自由エネルギー摂動(Targeted Free Energy Perturbation)と呼ばれるこの問題を緩和するための1つの戦略は、オーバーラップを増やすために構成空間の高次元マッピングを使用する。
論文 参考訳(メタデータ) (2020-02-12T11:10:00Z) - An Integrated Multi-Time-Scale Modeling for Solar Irradiance Forecasting
Using Deep Learning [1.52292571922932]
太陽エネルギーの非定常特性のため、短期的な太陽照度予測は困難である。
日内太陽光のマルチスケール予測のための統一アーキテクチャを提案する。
提案手法は,全試験場の平均RMSEを71.5%削減する。
論文 参考訳(メタデータ) (2019-05-07T14:40:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。