論文の概要: MISm: A Medical Image Segmentation Metric for Evaluation of weak labeled
Data
- arxiv url: http://arxiv.org/abs/2210.13642v1
- Date: Mon, 24 Oct 2022 22:55:00 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-26 14:58:45.188703
- Title: MISm: A Medical Image Segmentation Metric for Evaluation of weak labeled
Data
- Title(参考訳): MISm:弱いラベル付きデータの評価のための医用画像分割基準
- Authors: Dennis Hartmann, Verena Schmid, Philip Meyer, I\~naki Soto-Rey,
Dominik M\"uller, Frank Kramer
- Abstract要約: そこで我々は,新しい医用画像分割尺度MISmを提案する。
コミュニティでの応用と実験結果を得るために,MISmを公開評価フレームワークMISevalに組み込んだ。
- 参考スコア(独自算出の注目度): 0.440401067183266
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Performance measures are an important tool for assessing and comparing
different medical image segmentation algorithms. Unfortunately, the current
measures have their weaknesses when it comes to assessing certain edge cases.
These limitations arouse when images with a very small region of interest or
without a region of interest at all are assessed. As a solution for these
limitations, we propose a new medical image segmentation metric: MISm. To
evaluate MISm, the popular metrics in the medical image segmentation and MISm
were compared using images of magnet resonance tomography from several
scenarios. In order to allow application in the community and reproducibility
of experimental results, we included MISm in the publicly available evaluation
framework MISeval:
https://github.com/frankkramer-lab/miseval/tree/master/miseval
- Abstract(参考訳): さまざまな医用画像分割アルゴリズムを評価・比較する上で,性能測定は重要なツールである。
残念ながら、現在の対策は、特定のエッジケースを評価する際の弱点がある。
これらの制限は、非常に小さな関心領域や全く関心のない領域が評価されるときに刺激される。
これらの制約に対する解決策として,新しい医用画像分割尺度MISmを提案する。
MISmを評価するために, 磁気共鳴トモグラフィ画像を用いて, 医用画像のセグメンテーションとMISmの一般的な測定値を比較した。
コミュニティでの応用と実験結果の再現性を実現するため、MISmを公開評価フレームワークMISevalに含めました。
関連論文リスト
- FedMedICL: Towards Holistic Evaluation of Distribution Shifts in Federated Medical Imaging [68.6715007665896]
FedMedICLは統合されたフレームワークであり、フェデレートされた医療画像の課題を全体評価するためのベンチマークである。
6種類の医用画像データセットについて,いくつかの一般的な手法を総合的に評価した。
単純なバッチ分散手法はFedMedICL実験全体の平均性能において,高度な手法を超越していることがわかった。
論文 参考訳(メタデータ) (2024-07-11T19:12:23Z) - Rethinking Perceptual Metrics for Medical Image Translation [11.930968669340864]
このサブフィールドの解剖学的制約に乏しいため,知覚的指標がセグメンテーション指標と相関しないことを示す。
より少ないピクセルレベルのSWDメートル法は, 微妙なモダリティ内翻訳に有用であると考えられた。
論文 参考訳(メタデータ) (2024-04-10T19:39:43Z) - CodaMal: Contrastive Domain Adaptation for Malaria Detection in Low-Cost Microscopes [51.5625352379093]
マラリアは世界中で大きな問題であり、診断には低コストの顕微鏡(LCM)で効果的に動作するスケーラブルなソリューションが必要である。
ディープラーニングに基づく手法は、顕微鏡画像からコンピュータ支援による診断に成功している。
これらの方法には、マラリア原虫の感染した細胞とその生活段階を示す注釈画像が必要である。
LCMからの注記画像は、高精細顕微鏡(HCM)からの注記画像と比較して医療専門家の負担を著しく増大させる
論文 参考訳(メタデータ) (2024-02-16T06:57:03Z) - K-Space-Aware Cross-Modality Score for Synthesized Neuroimage Quality
Assessment [71.27193056354741]
クロスモダリティな医用画像合成をどう評価するかという問題は、ほとんど解明されていない。
本稿では,この課題の進展を促すため,新しい指標K-CROSSを提案する。
K-CROSSは、トレーニング済みのマルチモードセグメンテーションネットワークを使用して、病変の位置を予測する。
論文 参考訳(メタデータ) (2023-07-10T01:26:48Z) - BMAD: Benchmarks for Medical Anomaly Detection [51.22159321912891]
異常検出(AD)は、機械学習とコンピュータビジョンの基本的な研究課題である。
医用画像では、ADはまれな疾患や病態を示す可能性のある異常の検出と診断に特に重要である。
医用画像の異常検出方法を評価するための総合評価ベンチマークを導入する。
論文 参考訳(メタデータ) (2023-06-20T20:23:46Z) - Multi-Modal Evaluation Approach for Medical Image Segmentation [4.989480853499916]
本稿では,異なるセグメンテーション手法の有効性を評価するために,新しいマルチモーダル評価(MME)手法を提案する。
本稿では, 検出特性, 境界アライメント, 均一性, 総体積, 相対体積など, 関連性, 解釈可能な新しい特徴を紹介する。
提案するアプローチはオープンソースで,使用することができる。
論文 参考訳(メタデータ) (2023-02-08T15:31:33Z) - SKM-TEA: A Dataset for Accelerated MRI Reconstruction with Dense Image
Labels for Quantitative Clinical Evaluation [5.37260403457093]
定量的膝関節MRI(qMRI)画像の収集であるMulti-Task Evaluationデータセットを用いて,Stanford Knee MRIを提案する。
このデータセットは、匿名患者MRIスキャンの25,000スライス(155例)の生データ測定から成り立っている。
我々は、画像再構成や高密度画像ラベルとともに、MRI再構成、セグメンテーション、検出技術から抽出されたqMRIバイオマーカー推定の品質を測定するために、qMRIパラメータマップを使用するためのフレームワークを提供する。
論文 参考訳(メタデータ) (2022-03-14T02:40:40Z) - Medical Image Segmentation on MRI Images with Missing Modalities: A
Review [3.9548535445908928]
本研究の主な目的は、欠落したモダリティ補償ネットワークの性能評価を提供することである。
この問題のネガティブな影響を軽減するために、様々なアプローチが時間をかけて開発されてきた。
論文 参考訳(メタデータ) (2022-03-11T19:33:26Z) - Towards a Guideline for Evaluation Metrics in Medical Image Segmentation [0.0]
本研究は、医療画像分割評価のための以下の指標の概要と解釈ガイドを提供する。
要約として,標準化された医用画像分割評価のためのガイドラインを提案する。
論文 参考訳(メタデータ) (2022-02-10T13:38:05Z) - MyoPS: A Benchmark of Myocardial Pathology Segmentation Combining
Three-Sequence Cardiac Magnetic Resonance Images [84.02849948202116]
本研究は,MyoPS(MyoPS)の医療画像解析における新たな課題を定義するものである。
myoPSは、MICCAI 2020とともにMyoPSチャレンジで最初に提案された3シーケンスの心臓磁気共鳴(CMR)画像を組み合わせている。
この課題は45対のCMR画像と予め整列されたCMR画像を提供し、アルゴリズムは3つのCMRシーケンスから補完的な情報を結合して病理領域を分割することを可能にする。
論文 参考訳(メタデータ) (2022-01-10T06:37:23Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
医療画像分割のための新しい手法を提案する。
深層畳み込みネットワークを用いた数ショット画像セグメンタを構築します。
深層埋め込みの識別性を高め,同一クラスの特徴領域のクラスタリングを促進する。
論文 参考訳(メタデータ) (2020-12-10T04:01:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。