論文の概要: Learning to Reuse Distractors to support Multiple Choice Question
Generation in Education
- arxiv url: http://arxiv.org/abs/2210.13964v1
- Date: Tue, 25 Oct 2022 12:48:56 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-26 14:38:43.734698
- Title: Learning to Reuse Distractors to support Multiple Choice Question
Generation in Education
- Title(参考訳): 教育における複数質問生成を支援するためにディストラクターを再利用する学習
- Authors: Semere Kiros Bitew, Amir Hadifar, Lucas Sterckx, Johannes Deleu, Chris
Develder and Thomas Demeester
- Abstract要約: 本稿では,教師が複数選択質問(MCQ)の作成を支援するために,手作業による回答と注意散らしの集合をいかに活用するかを検討する。
データ駆動モデルをいくつか構築し,静的な特徴ベースモデルと比較した。
自動評価と人的評価は、コンテキスト認識モデルが静的な特徴ベースのアプローチを一貫して上回っていることを示している。
- 参考スコア(独自算出の注目度): 19.408786425460498
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Multiple choice questions (MCQs) are widely used in digital learning systems,
as they allow for automating the assessment process. However, due to the
increased digital literacy of students and the advent of social media
platforms, MCQ tests are widely shared online, and teachers are continuously
challenged to create new questions, which is an expensive and time-consuming
task. A particularly sensitive aspect of MCQ creation is to devise relevant
distractors, i.e., wrong answers that are not easily identifiable as being
wrong. This paper studies how a large existing set of manually created answers
and distractors for questions over a variety of domains, subjects, and
languages can be leveraged to help teachers in creating new MCQs, by the smart
reuse of existing distractors. We built several data-driven models based on
context-aware question and distractor representations, and compared them with
static feature-based models. The proposed models are evaluated with automated
metrics and in a realistic user test with teachers. Both automatic and human
evaluations indicate that context-aware models consistently outperform a static
feature-based approach. For our best-performing context-aware model, on average
3 distractors out of the 10 shown to teachers were rated as high-quality
distractors. We create a performance benchmark, and make it public, to enable
comparison between different approaches and to introduce a more standardized
evaluation of the task. The benchmark contains a test of 298 educational
questions covering multiple subjects & languages and a 77k multilingual pool of
distractor vocabulary for future research.
- Abstract(参考訳): 複数の選択質問(MCQ)は、評価プロセスの自動化を可能にするため、デジタル学習システムで広く使用されている。
しかし、学生のデジタルリテラシーの増大とソーシャルメディアプラットフォームの出現により、MCQテストはオンライン上で広く共有され、教師はコストと時間のかかる課題である新しい質問の作成に常に挑戦している。
MCQ生成の特に敏感な側面は、関連性のある気晴らし、すなわち、間違った答えが容易には見当たらないような答えを考案することである。
本稿では,様々な領域,主題,言語にまたがる質問に対して,既存の手作業による回答や気晴らしが,既存の気晴らしをスマートに再利用することで,教師が新しいmcqを作成するのにどのように役立つかを検討する。
コンテキスト認識型質問と気晴らし表現に基づくデータ駆動モデルをいくつか構築し,静的機能ベースモデルと比較した。
提案モデルは,自動測定と教師による現実的なユーザテストによって評価される。
自動評価と人的評価は、コンテキスト認識モデルが静的な特徴ベースのアプローチを一貫して上回っていることを示している。
ベストパフォーマンスなコンテキスト認識モデルでは,教師に示される10項目中平均3つの障害が,高品質な障害者として評価された。
パフォーマンスベンチマークを作成し、それを公開し、異なるアプローチの比較を可能にし、タスクのより標準化された評価を導入する。
このベンチマークには、複数の主題と言語をカバーする298の教育的質問と、将来の研究のための77kの多言語語彙プールが含まれている。
関連論文リスト
- Multimodal Reranking for Knowledge-Intensive Visual Question Answering [77.24401833951096]
回答生成のための知識候補のランク付け品質を向上させるためのマルチモーダル・リランカを提案する。
OK-VQAとA-OKVQAの実験は、遠隔監視からのマルチモーダルリランカーが一貫した改善をもたらすことを示している。
論文 参考訳(メタデータ) (2024-07-17T02:58:52Z) - Improving Automated Distractor Generation for Math Multiple-choice Questions with Overgenerate-and-rank [44.04217284677347]
本稿では,過剰生成・ランク化により生成したトラクタの品質を向上する新しい手法を提案する。
我々のランキングモデルでは、人間が作成したものよりも、人間の権威のあるものの方が好まれるが、人間の権威のあるトラクタとのアライメントが向上する。
論文 参考訳(メタデータ) (2024-04-19T00:25:44Z) - Exploring Automated Distractor Generation for Math Multiple-choice Questions via Large Language Models [40.50115385623107]
マルチチョイス質問(MCQ)は、評価や実践において、管理しやすく、格付けし、信頼性の高いフォーマットであるため、ほぼ全てのレベルの教育においてユビキタスである。
MCQの最も重要な側面の1つは、実際の学生の間でよくある誤りや誤解を狙った誤った選択肢である。
現在まで、高品質なイントラクタを開発するというタスクは、拡張性に制限のある教師や学習コンテンツデザイナにとって、労働力と時間を要するプロセスのままである。
論文 参考訳(メタデータ) (2024-04-02T17:31:58Z) - Automating question generation from educational text [1.9325905076281444]
質問ベースの活動(QBA)の使用は、教育において広く普及しており、学習と評価プロセスの不可欠な部分を形成している。
学校における形式的・要約的評価のための自動質問生成ツールの設計と評価を行う。
論文 参考訳(メタデータ) (2023-09-26T15:18:44Z) - Automated Distractor and Feedback Generation for Math Multiple-choice
Questions via In-context Learning [43.83422798569986]
マルチチョイス質問(MCQ)は、管理しやすく、格付けし、信頼性の高い評価形式であるため、ほぼ全てのレベルの教育においてユビキタスである。
これまで、高品質なイントラクタを作るというタスクは、教師やコンテンツデザイナーを学ぶための労働集約的なプロセスのままだった。
本稿では,テキスト内学習をベースとした簡易な学習手法を提案する。
論文 参考訳(メタデータ) (2023-08-07T01:03:04Z) - Learn to Explain: Multimodal Reasoning via Thought Chains for Science
Question Answering [124.16250115608604]
本稿では,SQA(Science Question Answering)について紹介する。SQA(Science Question Answering)は,21万のマルチモーダルな複数選択質問と多様な科学トピックと,それに対応する講義や説明による回答の注釈からなる新しいベンチマークである。
また,SQAでは,数ショットのGPT-3では1.20%,微調整のUnifiedQAでは3.99%の改善が見られた。
我々の分析は、人間に似た言語モデルは、より少ないデータから学習し、わずか40%のデータで同じパフォーマンスを達成するのに、説明の恩恵を受けることを示している。
論文 参考訳(メタデータ) (2022-09-20T07:04:24Z) - Automatic Short Math Answer Grading via In-context Meta-learning [2.0263791972068628]
本研究では,数学質問に対する児童生徒の回答に対する自動短解格付けの問題について検討する。
我々は、数学的な内容に適応した人気のある言語モデルBERTの変種である MathBERT をベースモデルとして使用しています。
第二に、言語モデルへの入力としてスコアリングサンプルを提供する、コンテキスト内学習アプローチを用いる。
論文 参考訳(メタデータ) (2022-05-30T16:26:02Z) - Quiz Design Task: Helping Teachers Create Quizzes with Automated
Question Generation [87.34509878569916]
本稿では,教師が読解クイズを自動生成するためのユースケースに焦点を当てた。
本研究は,クイズを構築中の教師が質問を受講し,それに応じるか,あるいは拒否するかのどちらかを理由として行う。
論文 参考訳(メタデータ) (2022-05-03T18:59:03Z) - Neural Multi-Task Learning for Teacher Question Detection in Online
Classrooms [50.19997675066203]
教師の音声記録から質問を自動的に検出するエンドツーエンドのニューラルネットワークフレームワークを構築している。
マルチタスク学習手法を取り入れることで,質問の種類によって意味的関係の理解を深めることが可能となる。
論文 参考訳(メタデータ) (2020-05-16T02:17:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。