Simulated Bifurcation Algorithm for MIMO Detection
- URL: http://arxiv.org/abs/2210.14660v1
- Date: Wed, 26 Oct 2022 12:25:05 GMT
- Title: Simulated Bifurcation Algorithm for MIMO Detection
- Authors: Wen Zhang and Yu-Lin Zheng
- Abstract summary: We study the performance of the simulated bifurcation (SB) algorithm for signal detection in multiple-input multiple-output (MIMO) system.
Our results show that SB algorithm can achieve significant performance improvement over the widely used linear minimum-mean square error decoder.
- Score: 4.251210885092476
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the performance of the simulated bifurcation (SB) algorithm for
signal detection in multiple-input multiple-output (MIMO) system, a problem of
key interest in modern wireless communication systems. Our results show that SB
algorithm can achieve significant performance improvement over the widely used
linear minimum-mean square error decoder in terms of the bit error rate versus
the signal-to-noise ratio, as well as performance improvement over the coherent
Ising machine based MIMO detection method.
Related papers
- Faster WIND: Accelerating Iterative Best-of-$N$ Distillation for LLM Alignment [81.84950252537618]
This paper reveals a unified game-theoretic connection between iterative BOND and self-play alignment.
We establish a novel framework, WIN rate Dominance (WIND), with a series of efficient algorithms for regularized win rate dominance optimization.
arXiv Detail & Related papers (2024-10-28T04:47:39Z) - Optimization of Iterative Blind Detection based on Expectation Maximization and Belief Propagation [29.114100423416204]
We propose a blind symbol detection for block-fading linear inter-symbol channels.
We design a joint channel estimation and detection scheme that combines the study expectation algorithm and the ubiquitous belief propagation algorithm.
We show that the proposed method can learn efficient schedules that generalize well and even outperform coherent BP detection in high signal-to-noise scenarios.
arXiv Detail & Related papers (2024-08-05T08:45:50Z) - Deep Unfolded Simulated Bifurcation for Massive MIMO Signal Detection [7.969977930633441]
Various signal detectors based on deep learning techniques and quantum(-inspired) algorithms have been proposed to improve the detection performance.
This paper focuses on the simulated bifurcation (SB) algorithm, a quantum-inspired algorithm.
arXiv Detail & Related papers (2023-06-28T14:46:55Z) - Optimal Algorithms for the Inhomogeneous Spiked Wigner Model [89.1371983413931]
We derive an approximate message-passing algorithm (AMP) for the inhomogeneous problem.
We identify in particular the existence of a statistical-to-computational gap where known algorithms require a signal-to-noise ratio bigger than the information-theoretic threshold to perform better than random.
arXiv Detail & Related papers (2023-02-13T19:57:17Z) - Signal Detection in MIMO Systems with Hardware Imperfections: Message
Passing on Neural Networks [101.59367762974371]
In this paper, we investigate signal detection in multiple-input-multiple-output (MIMO) communication systems with hardware impairments.
It is difficult to train a deep neural network (DNN) with limited pilot signals, hindering its practical applications.
We design an efficient message passing based Bayesian signal detector, leveraging the unitary approximate message passing (UAMP) algorithm.
arXiv Detail & Related papers (2022-10-08T04:32:58Z) - Plug-And-Play Learned Gaussian-mixture Approximate Message Passing [71.74028918819046]
We propose a plug-and-play compressed sensing (CS) recovery algorithm suitable for any i.i.d. source prior.
Our algorithm builds upon Borgerding's learned AMP (LAMP), yet significantly improves it by adopting a universal denoising function within the algorithm.
Numerical evaluation shows that the L-GM-AMP algorithm achieves state-of-the-art performance without any knowledge of the source prior.
arXiv Detail & Related papers (2020-11-18T16:40:45Z) - Fast Convergence Algorithm for Analog Federated Learning [30.399830943617772]
We propose an AirComp-based FedSplit algorithm for efficient analog federated learning over wireless channels.
We prove that the proposed algorithm linearly converges to the optimal solutions under the assumption that the objective function is strongly convex and smooth.
Our algorithm is theoretically and experimentally verified to be much more robust to the ill-conditioned problems with faster convergence compared with other benchmark FL algorithms.
arXiv Detail & Related papers (2020-10-30T10:59:49Z) - Deep Learning Based Equalizer for MIMO-OFDM Systems with Insufficient
Cyclic Prefix [11.11468231197267]
In particular, the signal detection performance is severely impaired by inter-carrier interference (ICI) and inter-symbol interference (ISI)
To tackle this problem, a deep learning-based equalizer is proposed for approximating the maximum likelihood detection.
Our results reveal that the proposed receiver can achieve significant performance improvement compared to two traditional baseline schemes.
arXiv Detail & Related papers (2020-07-23T02:21:24Z) - Graph Neural Networks for Massive MIMO Detection [8.516590865173407]
We learn a message-passing solution for the inference task of massive multiple-input multiple-output (MIMO) detection in wireless communication.
We adopt a graphical model based on the Markov random field (MRF) where belief propagation (BP) yields poor results when it assumes a uniform prior over the transmitted symbols.
arXiv Detail & Related papers (2020-07-11T07:34:56Z) - Iterative Algorithm Induced Deep-Unfolding Neural Networks: Precoding
Design for Multiuser MIMO Systems [59.804810122136345]
We propose a framework for deep-unfolding, where a general form of iterative algorithm induced deep-unfolding neural network (IAIDNN) is developed.
An efficient IAIDNN based on the structure of the classic weighted minimum mean-square error (WMMSE) iterative algorithm is developed.
We show that the proposed IAIDNN efficiently achieves the performance of the iterative WMMSE algorithm with reduced computational complexity.
arXiv Detail & Related papers (2020-06-15T02:57:57Z) - Data-Driven Symbol Detection via Model-Based Machine Learning [117.58188185409904]
We review a data-driven framework to symbol detection design which combines machine learning (ML) and model-based algorithms.
In this hybrid approach, well-known channel-model-based algorithms are augmented with ML-based algorithms to remove their channel-model-dependence.
Our results demonstrate that these techniques can yield near-optimal performance of model-based algorithms without knowing the exact channel input-output statistical relationship.
arXiv Detail & Related papers (2020-02-14T06:58:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.